Synopsis

Taking laser combs to higher frequencies

Physics 3, s105
Light from an ultraviolet frequency comb allows researchers to push the boundaries in precision spectroscopy, experimental tests of quantum electrodynamics, and atomic clocks.
Illustration: D. Kandula et al., Phys. Rev. Lett. (2010)

Frequency comb lasers produce light at many well-defined, finely spaced frequencies and thus act like hundreds of thousands of single-mode lasers all at once. Each of these frequencies can be calibrated with up to fifteen digits accuracy by comparison with primary frequency standards. Techniques designed to convert low frequency combs to higher frequencies where fewer light sources exist can lead to better atomic clocks and push the limits of precision atomic and molecular spectroscopy.

Dominik Kandula, Christoph Gohle, Tjeerd Pinkert, Wim Ubachs, and Kjeld Eikema at the Vrije Universiteit in Amsterdam, the Netherlands, announce, in Physical Review Letters, the generation of a frequency comb laser in the extreme ultraviolet part of the spectrum, reaching wavelengths near 51nm. Starting with an infrared frequency comb laser, they amplify two pulses, which they convert to the extreme ultraviolet (XUV) using high-harmonic generation in krypton gas. Furthermore, the team uses the light source to excite a beam of ground-state helium atoms and measure the transition frequency with an unprecedented accuracy. They find a ground-state ionization energy that is in agreement with recent theoretical predictions.

The results may be extendible beyond the XUV range to soft x-ray combs and allow for further tests of the theory of quantum electrodynamics with highly ionized atoms. – Sonja Grondalski


Subject Areas

Atomic and Molecular PhysicsOptics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

More Articles