Synopsis

Order out of chaos

Physics 3, s110
Experiments point to order in parts of the nuclear spectrum believed to be chaotic in nature.
Illustration:Alan Stonebraker

The quest for order in nuclear spectra is an exciting problem in nuclear and particle physics. An extreme example of spectroscopic complexity is provided by the highly excited states of intermediate- to heavy-mass nuclides. For several decades, the dominant belief has been that this part of the nuclear spectrum is completely random in nature, leading to the development of several stochastic approaches to its study.

In a paper in Physical Review Letters, P. E. Koehler, J. A. Harvey, and K. H. Guber (Oak Ridge National Laboratory, US) in collaboration with F. Bečvář and M. Krtička (Charles University, Czech Republic), show that new data from the Oak Ridge Electron Linear Accelerator (ORELA) strongly disagree with this dominant lore. The data, which resulted from precision measurements of widths of neutron resonances, suggest collective, as opposed to chaotic, behavior of the constituent nucleons. This result challenges several nuclear models currently employed throughout nuclear physics, and even parts of astrophysics, while providing valuable clues into the mechanisms that produce the baffling complexity of nuclear energy levels. – Abhishek Agarwal


Subject Areas

Nuclear Physics

Related Articles

Positron Emission Tomography Could Be Aided by Entanglement
Medical Physics

Positron Emission Tomography Could Be Aided by Entanglement

The quantum entanglement of photons used in positron emission tomography (PET) scans has been shown to be surprisingly robust, opening prospects for developing quantum-enhanced PET schemes. Read More »

Measuring Fusion Power
Nuclear Physics

Measuring Fusion Power

Experiments at the Joint European Torus make the case for using gamma rays to determine the fusion reaction rate in a magnetically confined plasma. Read More »

Nuclear Decay Detected in the Recoil of a Levitating Bead
Nuclear Physics

Nuclear Decay Detected in the Recoil of a Levitating Bead

A levitating microparticle is observed to recoil when a nucleus embedded in the particle decays—opening the door to future searches of invisible decay products. Read More »

More Articles