Synopsis

Order out of chaos

Physics 3, s110
Experiments point to order in parts of the nuclear spectrum believed to be chaotic in nature.
Illustration:Alan Stonebraker

The quest for order in nuclear spectra is an exciting problem in nuclear and particle physics. An extreme example of spectroscopic complexity is provided by the highly excited states of intermediate- to heavy-mass nuclides. For several decades, the dominant belief has been that this part of the nuclear spectrum is completely random in nature, leading to the development of several stochastic approaches to its study.

In a paper in Physical Review Letters, P. E. Koehler, J. A. Harvey, and K. H. Guber (Oak Ridge National Laboratory, US) in collaboration with F. Bečvář and M. Krtička (Charles University, Czech Republic), show that new data from the Oak Ridge Electron Linear Accelerator (ORELA) strongly disagree with this dominant lore. The data, which resulted from precision measurements of widths of neutron resonances, suggest collective, as opposed to chaotic, behavior of the constituent nucleons. This result challenges several nuclear models currently employed throughout nuclear physics, and even parts of astrophysics, while providing valuable clues into the mechanisms that produce the baffling complexity of nuclear energy levels. – Abhishek Agarwal


Subject Areas

Nuclear Physics

Related Articles

New Experiment Solves a Nuclear Mystery
Nuclear Physics

New Experiment Solves a Nuclear Mystery

Measuring how efficiently an isotope captures neutrons of various energies both confirms and refutes some surprising recent results. Read More »

Gauging the Temperature Sensitivity of a Nuclear Clock
Atomic and Molecular Physics

Gauging the Temperature Sensitivity of a Nuclear Clock

Researchers have characterized the temperature-induced frequency shifts of a thorium-229 nuclear transition—an important step in establishing thorium clocks as next-generation frequency standards. Read More »

New Measurements of a Charmed Baryon
Particles and Fields

New Measurements of a Charmed Baryon

Researchers at the Large Hadron Collider have measured the spin parity of a charm-quark-hosting particle, offering a new test of theoretical models. Read More »

More Articles