Synopsis: Order out of chaos

Experiments point to order in parts of the nuclear spectrum believed to be chaotic in nature.
Synopsis figure
Illustration:Alan Stonebraker

The quest for order in nuclear spectra is an exciting problem in nuclear and particle physics. An extreme example of spectroscopic complexity is provided by the highly excited states of intermediate- to heavy-mass nuclides. For several decades, the dominant belief has been that this part of the nuclear spectrum is completely random in nature, leading to the development of several stochastic approaches to its study.

In a paper in Physical Review Letters, P. E. Koehler, J. A. Harvey, and K. H. Guber (Oak Ridge National Laboratory, US) in collaboration with F. Bečvář and M. Krtička (Charles University, Czech Republic), show that new data from the Oak Ridge Electron Linear Accelerator (ORELA) strongly disagree with this dominant lore. The data, which resulted from precision measurements of widths of neutron resonances, suggest collective, as opposed to chaotic, behavior of the constituent nucleons. This result challenges several nuclear models currently employed throughout nuclear physics, and even parts of astrophysics, while providing valuable clues into the mechanisms that produce the baffling complexity of nuclear energy levels. – Abhishek Agarwal


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Atomic and Molecular Physics

One relation to rule them all

Read More »

Next Synopsis

Semiconductor Physics

A flattened cone

Read More »

Related Articles

Synopsis: Neutron Capture Constraints
Nuclear Physics

Synopsis: Neutron Capture Constraints

Experiments place tighter bounds on neutron capture rates that play an important role in the production of heavy elements in the Universe. Read More »

Synopsis: Trailing the Photons from Neutron Decay
Nuclear Physics

Synopsis: Trailing the Photons from Neutron Decay

A high-precision measurement of the photons emitted by neutron decays brings researchers closer to a new test of the standard model. Read More »

Synopsis: Fission Takes Its Time
Nuclear Physics

Synopsis: Fission Takes Its Time

Nuclear fission simulations show that the evolution of a splitting plutonium nucleus may be slower than previously thought. Read More »

More Articles