Synopsis

A flattened cone

Physics 3, s113
Photoemission measurements challenge the picture that the electronic states on the surface of the topological insulator Bi2Se3 form a perfect Dirac cone.
Illustration: K. Kuroda et al., Phys. Rev. Lett. (2010)

A three-dimensional topological insulator is a bulk insulator with robust, “topologically protected” conducting states on its surface. The surface states form a two-dimensional electron gas of “massless” Dirac fermions, like those in graphene, and support a quantum Hall state in a high magnetic field.

While this two-dimensional electron gas behavior is reminiscent of that in graphene, the surface states of a topological insulator should be more robust. This feature, which could be promising for designing devices that transport spin without heat dissipation, is tied to the fact that the Fermi surface of a topological insulator consists of an odd number of Dirac cones.

Bi2Se3, a well-known thermoelectric material, has recently been touted as a three-dimensional topological insulator when doped with a light nonmagnetic element, like magnesium. Now, writing in Physical Review Letters, Kenta Kuroda and colleagues at Japan’s Hiroshima University, in collaboration with researchers at other institutions in Japan and Spain, report new photoemission measurements that map out the electronic states on the surface of magnesium-doped Bi2Se3. Challenging the general belief that the electrons in Bi2Se3 form perfect Dirac cones, they find that there is a hexagonal deformation in the cone far from the Dirac point.

The presence of such a deformation opens the possibility that spin-density waves, which are forbidden for ideal topological insulators, form in Bi2Se3. The result also demonstrates that Bi2Se3 could, with appropriate doping, be a candidate material for quantum topological transport—a form of dissipationless transport that occurs when the electronic states are protected by time-reversal symmetry. – Daniel Ucko


Subject Areas

Semiconductor PhysicsMesoscopics

Related Articles

Exciton Ensembles Manifest Coherence
Condensed Matter Physics

Exciton Ensembles Manifest Coherence

Evidence of coherent light emission from excitons in a 2D-material structure could inspire new quantum-technology applications. Read More »

Electrical Conductance Reveals Complex Fractals
Graphene

Electrical Conductance Reveals Complex Fractals

Researchers find that a phenomenon called multifractality manifests in the conductance fluctuations of a 2D electron gas as the gas undergoes a topological phase transition. Read More »

A Solid Observation of Strong Kerr Nonlinearity
Condensed Matter Physics

A Solid Observation of Strong Kerr Nonlinearity

Researchers have demonstrated that a solid can exhibit an enhanced nonlinear optical phenomenon usually seen only in cold atomic gases. Read More »

More Articles