Synopsis: A flattened cone

Photoemission measurements challenge the picture that the electronic states on the surface of the topological insulator Bi2Se3 form a perfect Dirac cone.
Synopsis figure
Illustration: K. Kuroda et al., Phys. Rev. Lett. (2010)

A three-dimensional topological insulator is a bulk insulator with robust, “topologically protected” conducting states on its surface. The surface states form a two-dimensional electron gas of “massless” Dirac fermions, like those in graphene, and support a quantum Hall state in a high magnetic field.

While this two-dimensional electron gas behavior is reminiscent of that in graphene, the surface states of a topological insulator should be more robust. This feature, which could be promising for designing devices that transport spin without heat dissipation, is tied to the fact that the Fermi surface of a topological insulator consists of an odd number of Dirac cones.

Bi2Se3, a well-known thermoelectric material, has recently been touted as a three-dimensional topological insulator when doped with a light nonmagnetic element, like magnesium. Now, writing in Physical Review Letters, Kenta Kuroda and colleagues at Japan’s Hiroshima University, in collaboration with researchers at other institutions in Japan and Spain, report new photoemission measurements that map out the electronic states on the surface of magnesium-doped Bi2Se3. Challenging the general belief that the electrons in Bi2Se3 form perfect Dirac cones, they find that there is a hexagonal deformation in the cone far from the Dirac point.

The presence of such a deformation opens the possibility that spin-density waves, which are forbidden for ideal topological insulators, form in Bi2Se3. The result also demonstrates that Bi2Se3 could, with appropriate doping, be a candidate material for quantum topological transport—a form of dissipationless transport that occurs when the electronic states are protected by time-reversal symmetry. – Daniel Ucko


More Features »


More Announcements »

Subject Areas

Semiconductor PhysicsMesoscopics

Previous Synopsis

Nuclear Physics

Order out of chaos

Read More »

Related Articles

Synopsis: Quantum Circulator on a Chip
Quantum Information

Synopsis: Quantum Circulator on a Chip

A circulator that routes microwave signals is suitable for scaling up quantum-computing architectures. Read More »

Synopsis: Flip-Flopping the Bands

Synopsis: Flip-Flopping the Bands

A pair of semiconductor quantum wells with an inverted band structure hosts electrons whose spins are almost all in the same quantum state.   Read More »

Focus: Negative Resistance with a Single Atom

Focus: Negative Resistance with a Single Atom

Current flowing through a single silicon atom can be made to decrease with increasing voltage, potentially allowing the integration of a new type of component into microelectronic circuits. Read More »

More Articles