Synopsis: Airy insight into the physics of Anderson localization

A theoretical model and its experimental realization in a cold atomic gas pin down the nature of the criticality for a particular realization of the three-dimensional metal-insulator Anderson transition.

The Anderson localization phenomenon is notoriously difficult to access experimentally. Substantial progress has been made recently in cold atomic systems, where it is possible to prepare a system in a localized state and directly monitor the transport and localization properties of the atomic matter waves (see, for instance, Ref. [1]).

As described in Physical Review Letters by Gabriel Lemarié from Laboratoire Kastler Brossel and his collaborators from the same laboratory and from the Laboratoire PhLAM of the University of Lille, all in France, they can monitor the time evolution of a perfectly localized wave packet and extract information about the critical state of Anderson’s transition in three dimensions. The scientists also provide an explicit analytical expression for the critical wave function in terms of an Airy function, overarching all three regimes of Anderson insulation, criticality, and diffusive metallicity.

The reported advance is an excellent example of a successful cold-atom simulation of a prohibitively complicated condensed matter phenomenon. – Yonko Millev

[1] M. Sadgrove, Physics 1, 41 (2008).


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Spintronics

Organic spin filters

Read More »

Related Articles

Viewpoint: Superfluids Hit the Street
Atomic and Molecular Physics

Viewpoint: Superfluids Hit the Street

A flow pattern dubbed the von Kármán vortex street, which is renowned for its aesthetic beauty and extreme power, has been created in a superfluid. Read More »

Viewpoint: Lamb Shift Spotted in Cold Gases
Atomic and Molecular Physics

Viewpoint: Lamb Shift Spotted in Cold Gases

Cold atomic gases exhibit a phononic analog of the Lamb shift, in which energy levels shift in the presence of the quantum vacuum. Read More »

Synopsis: Quantum Droplets Swell to a Macrodrop
Atomic and Molecular Physics

Synopsis: Quantum Droplets Swell to a Macrodrop

Experiments with ultracold magnetic atoms reveal liquid-like quantum droplets that are 20 times larger than previously observed droplets.    Read More »

More Articles