Synopsis: Airy insight into the physics of Anderson localization

A theoretical model and its experimental realization in a cold atomic gas pin down the nature of the criticality for a particular realization of the three-dimensional metal-insulator Anderson transition.

The Anderson localization phenomenon is notoriously difficult to access experimentally. Substantial progress has been made recently in cold atomic systems, where it is possible to prepare a system in a localized state and directly monitor the transport and localization properties of the atomic matter waves (see, for instance, Ref. [1]).

As described in Physical Review Letters by Gabriel Lemarié from Laboratoire Kastler Brossel and his collaborators from the same laboratory and from the Laboratoire PhLAM of the University of Lille, all in France, they can monitor the time evolution of a perfectly localized wave packet and extract information about the critical state of Anderson’s transition in three dimensions. The scientists also provide an explicit analytical expression for the critical wave function in terms of an Airy function, overarching all three regimes of Anderson insulation, criticality, and diffusive metallicity.

The reported advance is an excellent example of a successful cold-atom simulation of a prohibitively complicated condensed matter phenomenon. – Yonko Millev

[1] M. Sadgrove, Physics 1, 41 (2008).


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Spintronics

Organic spin filters

Read More »

Related Articles

Synopsis: Losing Light in a BEC
Atomic and Molecular Physics

Synopsis: Losing Light in a BEC

The index of refraction in a gas of bosons is enhanced relative to its value in a classical gas, a predicted quantum effect that has now been observed in ultracold sodium atoms. Read More »

Focus: Atoms As Thermometers
Atomic and Molecular Physics

Focus: Atoms As Thermometers

A small number of atoms in repeated trials can accurately measure the temperature of an ultracold gas cloud—a step toward measuring temperature on the micrometer scale. Read More »

Synopsis: Bad Cavities for Precise Lasers
Optics

Synopsis: Bad Cavities for Precise Lasers

The frequency of a laser based on trapped ultracold atoms can be made insensitive to fluctuations in the laser cavity’s length. Read More »

More Articles