Synopsis: Towards a handheld optical table

A new optical component for integrated photonic circuits could prove helpful for applications that store and transmit the information contained in linearly polarized light.
Synopsis figure
Credit: L. Sansoni et al., Phys. Rev. Lett. (2010)

A typical quantum optics experiment takes place in a laboratory filled with numerous freestanding components mounted to an optical table.  All of these optical elements require careful alignment and stabilization—a limitation that could be overcome by instead embedding the optical components on a single rigid structure, such as a chip.

Writing in Physical Review Letters, Linda Sansoni and colleagues at Sapienza Universitá di Roma and collaborators at several institutes in Italy describe a beam splitter they fabricated in a glass structure for use in an integrated photonic circuit on a chip. A beam splitter, which separates one beam into two, is often an essential component for optical experiments. To make the beam splitter, they focused femtosecond infrared laser pulses on borosilicate glass and etched pathways for the input light.  By measuring input and output light for nonentangled and entangled photon states, the group showed that their device preserves the polarization of the input light.

The polarization-preserving feature of Sansoni et al.’s device makes it potentially useful for tasks like cryptography and linear optics quantum computing that are based on the information stored in the polarization of light. – Sonja Grondalski


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Interdisciplinary Physics

The topology of trade

Read More »

Next Synopsis

Quantum Information

Unexpected error

Read More »

Related Articles

Synopsis: Superdense Coding over Optical Fiber
Quantum Information

Synopsis: Superdense Coding over Optical Fiber

Researchers have demonstrated the fiber transmission of quantum information in which each quantum bit carries nearly two bits of classical information. Read More »

Synopsis: Quantum Signals Outpace Classical Ones
Quantum Information

Synopsis: Quantum Signals Outpace Classical Ones

New theoretical work shows how much faster quantum information can travel through a system than classical information. Read More »

Synopsis: Quantum Circulator on a Chip
Quantum Information

Synopsis: Quantum Circulator on a Chip

A circulator that routes microwave signals is suitable for scaling up quantum-computing architectures. Read More »

More Articles