Synopsis: Qubits, meet photons

A proposed nanoscale device that mediates interactions between qubits and light may become a building block for quantum information applications.
Synopsis figure
Credit: K. Stannigel et al., Phys. Rev. Lett. (2010)

Optomechanics, in which light couples to a nanoscale mechanical device (usually an oscillator), is an emergent area of activity in the field of quantum optics and quantum computation, particularly now that experimentalists have cooled certain devices to their quantum ground state. Various proposals have been made regarding so-called light-matter interfaces; the primary challenge appears to be that of developing an optical interface for qubits, which are typically based on spin or charge.

Writing in Physical Review Letters, Kai Stannigel, at the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria, and colleagues from Innsbruck, Harvard University, and the University of Copenhagen, describe a scheme for such a transducer (conversion device). The scheme—in which a nanomechanical resonator mediates interactions between the qubits and light—is versatile, as it works for qubits that do not interact with light by themselves. The authors expect the proposal to lead to a range of quantum devices with different types of solid-state qubits (spin, charge, or superconducting), thereby realizing concepts first introduced for atomic qubits in Fabry-Pérot cavities. The proposed device, which takes into account the disruptive effects of noise and loss, may serve as a central building block in various quantum communication, readout, and measurement applications. – Sami Mitra


More Features »


More Announcements »

Subject Areas


Previous Synopsis


Outstanding in the field

Read More »

Next Synopsis

Semiconductor Physics

Masking the true effect?

Read More »

Related Articles

Focus: Nanochannel Could Separate Mixed Fluids
Fluid Dynamics

Focus: Nanochannel Could Separate Mixed Fluids

Calculations show that capillary forces affecting a fluid mixture flowing through a nanochannel could be used to separate the mixture. Read More »

Focus: Negative Resistance with a Single Atom

Focus: Negative Resistance with a Single Atom

Current flowing through a single silicon atom can be made to decrease with increasing voltage, potentially allowing the integration of a new type of component into microelectronic circuits. Read More »

Viewpoint: An Ultrafast Switch for Electron Emission
Condensed Matter Physics

Viewpoint: An Ultrafast Switch for Electron Emission

By firing laser pulses of two different colors at a nanosized metal tip, researchers create an interference effect that turns electron emission on and off with femtosecond timing. Read More »

More Articles