Synopsis: An invisible gateway

Thanks to illusion optics, an open channel across a metamaterial slab is made invisible to light incident from the left.
Synopsis figure
Credit: C. Li et al., Phys. Rev. Lett. (2010)

In 2009, a team of researchers led by Che-Ting Chan at the Hong Kong University of Science and Technology theorized on using transformation optics and complementary media to produce optical illusion devices that change the optical response of an object into that of another object. Illusion optics, the science of making an object appear as something else, or reappear elsewhere in space, or even disappear altogether (cloaking) is full of exciting possibilities, pending experimental realization.

In a paper in Physical Review Letters, Chao Li and co-workers at the Chinese Academy of Sciences, Beijing, and colleagues at Soochow University, China, and Hong Kong University of Science and Technology, experimentally demonstrate the first illusion-optics device. They trick light to miss an open channel across a slab at a frequency range of interest, rendering the channel into an electromagnetically invisible gateway. Li et al.’s design involves carving out an open channel across a metamaterial slab that behaves as a perfect electric conductor, then replacing a trapezoidal region of the slab adjacent to the channel with another metamaterial having the exact opposite dielectric properties. This “double-negative” region complements the dielectric space inside the channel into an optically equivalent region that behaves as a perfect electric conductor, thereby giving the appearance of a blocked gateway to light that attempts to go through.

Li et al. use a transmission-line approach that allows them to design metamaterials with the desired optical properties and with minimal losses. Their illusion-optics prototype works at around 50MHz and has a 15MHz bandwidth. – Manolis Antonoyiannakis


Announcements

More Announcements »

Subject Areas

OpticsMetamaterials

Previous Synopsis

Superconductivity

Success without pressure

Read More »

Next Synopsis

Biological Physics

Cells push, cells pull

Read More »

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Synopsis: Controlling a Laser’s Phase
Optics

Synopsis: Controlling a Laser’s Phase

A compact scheme can directly modulate the phase of a laser without a bulky external modulator. Read More »

Focus: Chip Changes Photon Color While Preserving Quantumness
Photonics

Focus: Chip Changes Photon Color While Preserving Quantumness

A new device that can potentially be scaled up for quantum computing converts visible light to infrared light suitable for fiber-optic transmission without destroying the light’s quantum state. Read More »

More Articles