Synopsis: Adapting to habitat

Spatial variations can drive evolution in certain ecological habitats.

The complex relationship between ecology and evolution, sometimes ignored in biological models, is key in driving species adaptation in different environments. In a paper in Physical Review Letters, Rutger Hermsen and Terence Hwa, from the Center for Theoretical Biological Physics at the University of California, San Diego, propose a model that describes how evolution may be affected by the presence of spatial heterogeneities—location-dependent variations in the environment—in so-called source-sink ecologies, in which a species may only survive in a hostile environment (sink) after adaptation through a mutation. This model may mimic the emergence of insecticide resistance between plantations that use different types or amounts of insecticides, or bacteria migration between treated and untreated individuals.

One of the main findings in the paper is that, in general, the first adapted individual found in a hostile environment exhibits a mutation, which occurs prior to migration to the sink. This breakthrough may serve as a starting point for more realistic models where gradual environmental changes are allowed, and, in turn, to a better understanding of the development of infectious diseases or the emergence of antibiotic resistant pathogens. – Hernan D. Rozenfeld


Announcements

More Announcements »

Subject Areas

Soft MatterBiological PhysicsInterdisciplinary Physics

Previous Synopsis

Atomic and Molecular Physics

Progress toward an antihydrogen beam

Read More »

Next Synopsis

Soft Matter

Mechanical proteins

Read More »

Related Articles

Synopsis: In, Yet Out of Equilibrium
Statistical Physics

Synopsis: In, Yet Out of Equilibrium

An analysis of a popular model for active matter, like bacteria and buffalo herds, defines the conditions under which such systems can be described with the tools of equilibrium statistics. Read More »

Focus: Biological Cells Form Electric Circuits
Biological Physics

Focus: Biological Cells Form Electric Circuits

Cells that are electrically active and that also produce light for easy voltage monitoring could lead to new studies of heart arrhythmias and possibly bio-computing. Read More »

Focus: Detecting Femtonewton Forces in Water
Soft Matter

Focus: Detecting Femtonewton Forces in Water

A new technique builds on previous ones to detect forces in the femtonewton range in water, despite the constant jiggling of water molecules.   Read More »

More Articles