Synopsis: Adapting to habitat

Spatial variations can drive evolution in certain ecological habitats.

The complex relationship between ecology and evolution, sometimes ignored in biological models, is key in driving species adaptation in different environments. In a paper in Physical Review Letters, Rutger Hermsen and Terence Hwa, from the Center for Theoretical Biological Physics at the University of California, San Diego, propose a model that describes how evolution may be affected by the presence of spatial heterogeneities—location-dependent variations in the environment—in so-called source-sink ecologies, in which a species may only survive in a hostile environment (sink) after adaptation through a mutation. This model may mimic the emergence of insecticide resistance between plantations that use different types or amounts of insecticides, or bacteria migration between treated and untreated individuals.

One of the main findings in the paper is that, in general, the first adapted individual found in a hostile environment exhibits a mutation, which occurs prior to migration to the sink. This breakthrough may serve as a starting point for more realistic models where gradual environmental changes are allowed, and, in turn, to a better understanding of the development of infectious diseases or the emergence of antibiotic resistant pathogens. – Hernan D. Rozenfeld


Announcements

More Announcements »

Subject Areas

Soft MatterBiological PhysicsInterdisciplinary Physics

Previous Synopsis

Atomic and Molecular Physics

Progress toward an antihydrogen beam

Read More »

Next Synopsis

Soft Matter

Mechanical proteins

Read More »

Related Articles

Synopsis: Water Flow Helps Cells Move
Biological Physics

Synopsis: Water Flow Helps Cells Move

Water flowing through a cell’s membrane is essential to the process of changing cellular shape. Read More »

Focus: Oil-Water Droplets Form Surprising Structures
Soft Matter

Focus: Oil-Water Droplets Form Surprising Structures

Water droplets can self-assemble into a range of structures inside larger drops of oil, with potential uses in targeted drug delivery and biological tissue engineering. Read More »

Synopsis: Electrically Dancing Colloids
Soft Matter

Synopsis: Electrically Dancing Colloids

An applied electric field could reconfigure the structure of colloidal defects dispersed within a liquid crystal. Read More »

More Articles