Synopsis: Adapting to habitat

Spatial variations can drive evolution in certain ecological habitats.

The complex relationship between ecology and evolution, sometimes ignored in biological models, is key in driving species adaptation in different environments. In a paper in Physical Review Letters, Rutger Hermsen and Terence Hwa, from the Center for Theoretical Biological Physics at the University of California, San Diego, propose a model that describes how evolution may be affected by the presence of spatial heterogeneities—location-dependent variations in the environment—in so-called source-sink ecologies, in which a species may only survive in a hostile environment (sink) after adaptation through a mutation. This model may mimic the emergence of insecticide resistance between plantations that use different types or amounts of insecticides, or bacteria migration between treated and untreated individuals.

One of the main findings in the paper is that, in general, the first adapted individual found in a hostile environment exhibits a mutation, which occurs prior to migration to the sink. This breakthrough may serve as a starting point for more realistic models where gradual environmental changes are allowed, and, in turn, to a better understanding of the development of infectious diseases or the emergence of antibiotic resistant pathogens. – Hernan D. Rozenfeld


Announcements

More Announcements »

Subject Areas

Soft MatterBiological PhysicsInterdisciplinary Physics

Previous Synopsis

Atomic and Molecular Physics

Progress toward an antihydrogen beam

Read More »

Next Synopsis

Soft Matter

Mechanical proteins

Read More »

Related Articles

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Viewpoint: Putting Bounds on Biochemical Noise
Biological Physics

Viewpoint: Putting Bounds on Biochemical Noise

Biochemical networks are often poorly characterized, but researchers can still derive limits on the level of the random variations or noise in different network components. Read More »

Focus: Sensing Delays Control Robot Swarming
Interdisciplinary Physics

Focus: Sensing Delays Control Robot Swarming

A robot group clusters together or disperses based on each robot’s reaction time for sensing light, a finding useful for search-and-rescue missions.   Read More »

More Articles