Synopsis: Adapting to habitat

Spatial variations can drive evolution in certain ecological habitats.

The complex relationship between ecology and evolution, sometimes ignored in biological models, is key in driving species adaptation in different environments. In a paper in Physical Review Letters, Rutger Hermsen and Terence Hwa, from the Center for Theoretical Biological Physics at the University of California, San Diego, propose a model that describes how evolution may be affected by the presence of spatial heterogeneities—location-dependent variations in the environment—in so-called source-sink ecologies, in which a species may only survive in a hostile environment (sink) after adaptation through a mutation. This model may mimic the emergence of insecticide resistance between plantations that use different types or amounts of insecticides, or bacteria migration between treated and untreated individuals.

One of the main findings in the paper is that, in general, the first adapted individual found in a hostile environment exhibits a mutation, which occurs prior to migration to the sink. This breakthrough may serve as a starting point for more realistic models where gradual environmental changes are allowed, and, in turn, to a better understanding of the development of infectious diseases or the emergence of antibiotic resistant pathogens. – Hernan D. Rozenfeld


More Announcements »

Subject Areas

Soft MatterBiological PhysicsInterdisciplinary Physics

Previous Synopsis

Atomic and Molecular Physics

Progress toward an antihydrogen beam

Read More »

Next Synopsis

Soft Matter

Mechanical proteins

Read More »

Related Articles

Viewpoint: Particles Move to the Beat of a Microfluidic Drum
Fluid Dynamics

Viewpoint: Particles Move to the Beat of a Microfluidic Drum

A thin vibrating plate can organize microscopic particles within a liquid into different patterns, an effect like that observed in 18th century studies of musical instruments. Read More »

Focus: How to Compare Books or Genomes
Complex Systems

Focus: How to Compare Books or Genomes

A mathematical technique for comparing large symbol sets suggests that less frequently used words are mainly responsible for the evolution of the English language over the past two centuries. Read More »

Viewpoint: Turning Down the Volume on Granular Materials
Statistical Physics

Viewpoint: Turning Down the Volume on Granular Materials

A reformulation of the statistical mechanics of granular materials replaces the volume of the material with a function related to its structure. Read More »

More Articles