Synopsis: Reality, locality, and “free will”

By relaxing certain assumptions, it is possible to describe quantum correlations as both local and real.

In 1964, John Bell devised a testable prediction (now known as Bell’s inequality) based on two reasonable assumptions: that the measurement of one particle cannot instantaneously influence another, distant particle (locality) and that particles have properties before you measure them (reality).  Numerous experiments have since shown that Bell’s inequality is violated, forcing one to conclude that, contrary to the view held by Einstein, Podolsky, and Rosen, quantum mechanics cannot be both local and real.

But what of other assumptions built into Bell’s inequality?  In a paper appearing in Physical Review Letters, Michael Hall at the Australian National University in Canberra considers an assumption, called measurement independence, in the following experimental paradigm: A source emits two particles in an entangled state and sends them to two distant laboratories, where two experimenters randomly choose apparatus settings that measure a system property.  The measurement outcomes can be correlated in a way that violates Bell’s inequality, but measurement independence assumes that the experimenters freely choose apparatus settings, independent of any properties of the systems that they measure.  By relaxing this assumption, Michael Hall constructs a local and real model that describes the correlations of the experiment.  He shows that locality and reality can be retained with a 14% reduction of the experimenters’ “free will”—that is, the assumption of measurement independence need not be given up completely. – Sonja Grondalski


Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Nuclear Physics

Unequal parts

Read More »

Next Synopsis

Astrophysics

Friction in a vacuum

Read More »

Related Articles

Synopsis: Nanofiber Optical Memory
Quantum Information

Synopsis: Nanofiber Optical Memory

Light signals propagating down an ultrathin fiber can be temporarily stored in a cloud of cold atoms surrounding the fiber. Read More »

Synopsis: Entangled Static
Quantum Information

Synopsis: Entangled Static

Evidence of quantum entanglement is uncovered in an unlikely place: the electrical noise in a simple quantum conductor chilled to near zero. Read More »

Viewpoint: Single Dot Meets Single Ion
Atomic and Molecular Physics

Viewpoint: Single Dot Meets Single Ion

Researchers show that a single photon can transfer an excitation from a quantum dot to an ion. Read More »

More Articles