Synopsis

Reality, locality, and “free will”

Physics 4, s1
By relaxing certain assumptions, it is possible to describe quantum correlations as both local and real.

In 1964, John Bell devised a testable prediction (now known as Bell’s inequality) based on two reasonable assumptions: that the measurement of one particle cannot instantaneously influence another, distant particle (locality) and that particles have properties before you measure them (reality).  Numerous experiments have since shown that Bell’s inequality is violated, forcing one to conclude that, contrary to the view held by Einstein, Podolsky, and Rosen, quantum mechanics cannot be both local and real.

But what of other assumptions built into Bell’s inequality?  In a paper appearing in Physical Review Letters, Michael Hall at the Australian National University in Canberra considers an assumption, called measurement independence, in the following experimental paradigm: A source emits two particles in an entangled state and sends them to two distant laboratories, where two experimenters randomly choose apparatus settings that measure a system property.  The measurement outcomes can be correlated in a way that violates Bell’s inequality, but measurement independence assumes that the experimenters freely choose apparatus settings, independent of any properties of the systems that they measure.  By relaxing this assumption, Michael Hall constructs a local and real model that describes the correlations of the experiment.  He shows that locality and reality can be retained with a 14% reduction of the experimenters’ “free will”—that is, the assumption of measurement independence need not be given up completely. – Sonja Grondalski


Subject Areas

Quantum Information

Related Articles

Spinning Up Rydberg Atoms Extends Their Life
Quantum Information

Spinning Up Rydberg Atoms Extends Their Life

Researchers record the longest Rydberg-atom lifetime by placing strontium atoms in “circular” states, where the outer electrons move in planet-like orbits. Read More »

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

More Articles