Synopsis: Unequal parts

New experiments studying nuclear fission yield unexpected results.

Traditional models of nuclear fission predict that heavy nuclei break into unequally sized (asymmetric) parts, which is consistent with the findings of most experiments in low-energy fission. This is naturally explained by the fact that one of the fragments tends to be in the vicinity of doubly magic tin-132, which is highly stable.

The vast majority of fission experiments, however, have focused on heavy nuclides ranging from thorium to fermium. Now, new experiments performed at the ISOLDE facility in CERN and presented in Physical Review Letters (Andrei Andreyev et al.), probe a different corner of the nuclear chart. The team studies mercury-180 (with 80 protons and 100 neutrons) and finds that the fission products are also asymmetric. However, in this particular case, the outcome is counterintuitive, since a symmetric decay of the nucleus into two copies of zirconium-90 (with 40 protons and 50 neutrons) would have produced exceptionally stable nuclei.

The ISOLDE team’s puzzling result hints that a very subtle interplay between macroscopic and microscopic interactions plays a deeper role in the fission process than expected and is likely to inspire detailed theoretical studies and further experiment. – Abhishek Agarwal


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Particles and Fields

In full color

Read More »

Next Synopsis

Quantum Information

Reality, locality, and “free will”

Read More »

Related Articles

Viewpoint: Can Four Neutrons Tango?
Nuclear Physics

Viewpoint: Can Four Neutrons Tango?

Evidence that the four-neutron system known as the tetraneutron exists as a resonance has been uncovered in an experiment at the RIKEN Radioactive Ion Beam Factory. Read More »

Synopsis: Throwing Nuclei in the Ring
Nuclear Physics

Synopsis: Throwing Nuclei in the Ring

By trapping nuclei in a particle storage ring, researchers characterize previously inaccessible nuclear reactions that take place in stellar explosions. Read More »

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays
Optics

Viewpoint: Cavity with Iron Nuclei Slows Down X Rays

Slow light effects have been measured for x rays using a cavity filled with iron nuclei, where the speed of light was reduced by a factor of 10,000. Read More »

More Articles