Synopsis: Combining two approaches to the strong force

A renormalizable effective theory for quantum chromodynamics.
Synopsis figure
Credit: Alan Stonebraker, adapted from S. Weinberg, Phys. Rev. Lett. (2010)

Quantum Chromodynamics (QCD) is the fundamental description of the strong force in the standard model of particle physics. QCD is very successful at describing the behavior of quarks and gluons at high energies. However, at energies below about 1GeV, the theory becomes strongly coupled, and one must account for bound states of the theory: pions, protons, neutrons, and other hadrons. Attempts to formulate an effective theory of strong interactions at such low energies have traditionally suffered from problems of renormalizability, which severely constrain their predictive powers.

One approach that has been used involves “constituent quarks,” which dress up the bare quarks of QCD into effective entities. For example, a proton is often described as being “composed of three constituent quarks.” A second approach is to make an expansion in the limit of “large N” where N is the number of colors. Although N is only 3 in QCD, this approach often works well qualitatively. Now, in a recent paper in Physical Review Letters, Steven Weinberg proposes a way to marry the two approaches into an effective field theory of constituent quarks, gluons, and pions. It turns out that the large N limit of this effective theory is renormalizable.

This proposal introduces a new computational tool for hadronic physics and investigations of its phenomenological viability are likely to launch interesting future research. – Abhishek Agarwal and Robert Garisto


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Particles and Fields

In full color

Read More »

Related Articles

Synopsis: Pentaquark Discovery Confirmed
Particles and Fields

Synopsis: Pentaquark Discovery Confirmed

New results from the LHCb experiment confirm the 2015 discovery that quarks can combine into groups of five. Read More »

Synopsis: Searching for Majorana Neutrinos
Particles and Fields

Synopsis: Searching for Majorana Neutrinos

The KamLAND-Zen collaboration has run the most sensitive search to date for a radioactive decay that could reveal whether neutrinos are Majorana fermions. Read More »

Viewpoint: Hunting the Sterile Neutrino
Particles and Fields

Viewpoint: Hunting the Sterile Neutrino

A search for sterile neutrinos with the IceCube detector has found no evidence for the hypothetical particles, significantly narrowing the range of masses that a new kind of neutrino could possibly have. Read More »

More Articles