Synopsis: Combining two approaches to the strong force

A renormalizable effective theory for quantum chromodynamics.
Synopsis figure
Credit: Alan Stonebraker, adapted from S. Weinberg, Phys. Rev. Lett. (2010)

Quantum Chromodynamics (QCD) is the fundamental description of the strong force in the standard model of particle physics. QCD is very successful at describing the behavior of quarks and gluons at high energies. However, at energies below about 1GeV, the theory becomes strongly coupled, and one must account for bound states of the theory: pions, protons, neutrons, and other hadrons. Attempts to formulate an effective theory of strong interactions at such low energies have traditionally suffered from problems of renormalizability, which severely constrain their predictive powers.

One approach that has been used involves “constituent quarks,” which dress up the bare quarks of QCD into effective entities. For example, a proton is often described as being “composed of three constituent quarks.” A second approach is to make an expansion in the limit of “large N” where N is the number of colors. Although N is only 3 in QCD, this approach often works well qualitatively. Now, in a recent paper in Physical Review Letters, Steven Weinberg proposes a way to marry the two approaches into an effective field theory of constituent quarks, gluons, and pions. It turns out that the large N limit of this effective theory is renormalizable.

This proposal introduces a new computational tool for hadronic physics and investigations of its phenomenological viability are likely to launch interesting future research. – Abhishek Agarwal and Robert Garisto


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Particles and Fields

In full color

Read More »

Related Articles

Synopsis: Testing Quantum Physics with Neutrinos
Quantum Physics

Synopsis: Testing Quantum Physics with Neutrinos

An experiment similar to the Bell inequality test confirms that neutrino oscillation is a quantum physics effect that is incompatible with alternative classical models. Read More »

Viewpoint: Of Gluons and Fireflies
Nuclear Physics

Viewpoint: Of Gluons and Fireflies

Improved models of gluon fluctuations within protons have been developed and applied to particle collision data, pointing to strong gluon fluctuations at high energies. Read More »

Synopsis: Trailing the Photons from Neutron Decay
Nuclear Physics

Synopsis: Trailing the Photons from Neutron Decay

A high-precision measurement of the photons emitted by neutron decays brings researchers closer to a new test of the standard model. Read More »

More Articles