Synopsis

Grainy picture

Physics 4, s12
Experiments and modeling point to the optimal shapes for enhancing lift or drag forces on objects moving in granular media.
Credit: Y. Ding et al., Phys. Rev. Lett. (2011)

Lift and drag—the forces that allow an airplane to take off and land—are normally associated with an object moving in a liquid or gas. Now, a team of scientists reports in Physical Review Letters how an object’s shape affects these forces when it moves through a granular medium, like sand or beads.

Yang Ding and his colleagues at the Georgia Institute of Technology, US, designed a simple experiment to measure the upward (lift) and shear (drag) forces on differently shaped rods moving through a bed of millimeter-sized glass beads. The rods, which had either a circular, square, or half-circle cross section, were suspended from a moving platform and dragged—with their long axis perpendicular to the direction of motion—through the beads. A force sensor on the platform measured the resultant lift and drag forces on the moving rods, which Ding et al. compared with numerical simulations and a theoretical model.

The group finds that lift is downwards on the half-cylinder rod, but upwards on the square and circular rods. Variations on this type of study could help scientists understand how body shape aids a sand-burrowing animal or how to optimize the design of desert-roving robots. – Jessica Thomas


Subject Areas

Soft MatterInterdisciplinary Physics

Related Articles

Drip Physics Produces Flexible Stalactite-Like Surface
Soft Matter

Drip Physics Produces Flexible Stalactite-Like Surface

By repeatedly applying coats of a hardening polymer to a surface, researchers have created rubbery stalactite-like formations that could be useful in soft robotics. Read More »

Measuring Particle Diffusion with the Countoscope
Soft Matter

Measuring Particle Diffusion with the Countoscope

A new method for studying the behavior of multiparticle systems relies on a simple “head count” of particles in imaginary boxes. Read More »

Identifying Phases in Low-Speed Human Movement
Complex Systems

Identifying Phases in Low-Speed Human Movement

By observing the motion of preschool children, researchers have developed a thermodynamic description of human movement that pinpoints collective phases emerging when social interactions are strong. Read More »

More Articles