Synopsis

What lies beneath

Physics 4, s11
A carpet cloak hides a chunky object sitting on a mirror, reflecting light as though only the mirror were there.
Credit: B. Zhang et al., Phys. Rev. Lett. (2011)

Carpet cloaks hide an object under a smooth bump that appears flat to the observer—at least over a range of wavelengths of light. In order to distort light so as to hide an object, a carpet cloak must be made out of an anisotropic material. So far, scientists have focused on using metamaterials—artificial structures built out of subwavelength elements—to construct such cloaks, but these designs rely on expensive nano- or microfibrication, have so far been limited to infrared wavelengths or longer, and aren’t practical for hiding objects more than a millimeter in size.

Now, Baile Zhang and colleagues at the Singapore-MIT Alliance for Research and Technology Center announce in a paper appearing in Physical Review Letters that they have fabricated a carpet cloak that hides macroscopic objects over a broad range of visible wavelengths. They make their carpet cloak out of calcite—a naturally anisotropic material—split into two crystallographic blocks with different orientation of their respective principal refractive indices. They place the cloak over a steel wedge, 2mm high and 38mm wide, which sits on a mirror, and illuminate it with a beam of green polarized light. As evidence that the cloak hides the wedge, they see the reflection of the beam from only the underlying mirror.

Although Zhang et al.’s calcite cloak currently only works with polarized light and for a specific geometry, it is inexpensive, absorbs little light, and could ultimately hide larger objects. – Manolis Antonoyiannakis


Subject Areas

Optics

Related Articles

Stiffening a Spring Made of Light
Optics

Stiffening a Spring Made of Light

Adding a nonlinear crystal to an optical spring can change the spring’s stiffness, a finding that could allow the use of such devices as gravitational-wave detectors. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

A New Source for Quantum Light
Quantum Physics

A New Source for Quantum Light

A new device consisting of a semiconductor ring produces pairs of entangled photons that could be used in a photonic quantum processor. Read More »

More Articles