Synopsis

Bubble trouble

Physics 4, s14
Measurements of microbubbles in blood vessels under ultrasonic exposure show complex behavior that might relate to potential tissue damage.
Credit: Carin Cain

For decades, ultrasonic imaging has been used by doctors for purposes ranging from diagnosing heart problems to checking on the course of pregnancy. In recent years, clinicians have been using “contrast agents” that induce microbubble formation to improve the quality of the imaging, particularly for assessing tissues and blood vessels in the heart. However, the US Food and Drug Administration has raised concerns that these microbubbles may be causing damage. Writing in Physical Review Letters, Hong Chen and colleagues at the University of Washington, Seattle, in the US, report their efforts to study this problem by imaging how microbubbles behave in blood vessels under ultrasound exposure.

Chen et al. used rat abdominal tissue in saline solution, injected with lipid-coated microbubbles, as their model system. The researchers applied 1MHz ultrasound pulses while taking high-speed movies of the bubble-vessel interactions under a microscope. They found that the ultrasonically exposed bubbles would produce microjets and cause the blood vessel walls to bend inwards and outwards. According to the authors, this complex dynamic behavior depends sensitively on the viscoelastic properties of the tissue material and their observations provide a starting point for assessing ultrasonically induced microbubble damage. – David Voss


Subject Areas

Biological Physics

Related Articles

Noninvasive Alternative to Cancer Biopsy
Biological Physics

Noninvasive Alternative to Cancer Biopsy

Researchers have developed a cancer-detection method that uses painless sound waves, rather than a torturing needle, to obtain genetic information about a patient’s cancer. Read More »

How Droplets Form Inside Cells
Soft Matter

How Droplets Form Inside Cells

A new theory that accounts for disorder in a protein’s structure sheds light on the development inside a cell of tiny droplets that are vital to a cell’s function. Read More »

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

More Articles