Synopsis: Bubble trouble

Measurements of microbubbles in blood vessels under ultrasonic exposure show complex behavior that might relate to potential tissue damage.
Synopsis figure
Credit: Carin Cain

For decades, ultrasonic imaging has been used by doctors for purposes ranging from diagnosing heart problems to checking on the course of pregnancy. In recent years, clinicians have been using “contrast agents” that induce microbubble formation to improve the quality of the imaging, particularly for assessing tissues and blood vessels in the heart. However, the US Food and Drug Administration has raised concerns that these microbubbles may be causing damage. Writing in Physical Review Letters, Hong Chen and colleagues at the University of Washington, Seattle, in the US, report their efforts to study this problem by imaging how microbubbles behave in blood vessels under ultrasound exposure.

Chen et al. used rat abdominal tissue in saline solution, injected with lipid-coated microbubbles, as their model system. The researchers applied 1MHz ultrasound pulses while taking high-speed movies of the bubble-vessel interactions under a microscope. They found that the ultrasonically exposed bubbles would produce microjets and cause the blood vessel walls to bend inwards and outwards. According to the authors, this complex dynamic behavior depends sensitively on the viscoelastic properties of the tissue material and their observations provide a starting point for assessing ultrasonically induced microbubble damage. – David Voss


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Astrophysics

Better view of a merging pair

Read More »

Next Synopsis

Atomic and Molecular Physics

Less wiggle room for the gravitational constant

Read More »

Related Articles

Focus: Biological Cells Form Electric Circuits
Biological Physics

Focus: Biological Cells Form Electric Circuits

Cells that are electrically active and that also produce light for easy voltage monitoring could lead to new studies of heart arrhythmias and possibly bio-computing. Read More »

Synopsis: Bacteria Create Own Swim Lane
Biological Physics

Synopsis: Bacteria Create Own Swim Lane

Researchers calculate the size of a low-resistance buffer zone created by microbial organisms as they swim through the mucus lining of the stomach. Read More »

Synopsis: Cells Go with the Crowd
Biological Physics

Synopsis: Cells Go with the Crowd

A simple model suggests a way in which clusters of cells could follow concentration gradients in cases where individual cells cannot. Read More »

More Articles