Synopsis: Less wiggle room for the gravitational constant

Ultracold atoms trapped in optical lattices allow high-precision measurement of the gravitational constant.
Synopsis figure
Credt: N. Poli et al., Phys. Rev. Lett. (2011)

Ultracold atoms have proven their value as test beds for creating new quantum states of matter and simulating how electrons behave in solids. Trapped and cooled atoms have also taken a starring role in high-precision measurements of fundamental constants and in atomic clocks. Writing in Physical Review Letters, Nicola Poli and colleagues at the University of Florence, Italy, report their use of ultracold strontium atoms to push forward our knowledge of Earth’s gravitational constant.

Building on prior proposals to use atoms captured in optical traps, Poli et al. transfer roughly one million strontium-88 atoms at 0.6μK into a vertically oriented optical lattice. Since the atoms move in a periodic potential, they undergo Bloch oscillations, similar to electrons in a solid-state lattice under the influence of an applied electric field. Bloch oscillations arise when the induced momentum change of the particle caused by a field interacts with the band structure of the lattice. In Poli et al.’s experiments, however, the applied field is gravity. By imaging the cloud of strontium atoms undergoing Bloch oscillations, the authors were able to measure the acceleration due to Earth’s gravitational field, g, to within 140ppb and compare the result with measurements by the best conventional gravimeter.

The authors say that their hope is that by optimizing the technique, measurements might become possible that test general relativity, theories of quantum gravity, and deviations from Newtonian gravity. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsGravitation

Previous Synopsis

Biological Physics

Bubble trouble

Read More »

Next Synopsis

Spintronics

Two in one

Read More »

Related Articles

Focus: LIGO Bags Another Black Hole Merger
Astrophysics

Focus: LIGO Bags Another Black Hole Merger

LIGO has detected a second burst of gravitational waves from merging black holes, suggesting that such detections will soon become routine and part of a new kind of astronomy. Read More »

Viewpoint: Paving the Way to Space-Based Gravitational-Wave Detectors
Cosmology

Viewpoint: Paving the Way to Space-Based Gravitational-Wave Detectors

The first results from the LISA Pathfinder mission demonstrate that two test masses can be put in free fall with a relative acceleration sufficiently free of noise to meet the requirements needed for space-based gravitational-wave detection. Read More »

Viewpoint: Taming Ultracold Molecules
Atomic and Molecular Physics

Viewpoint: Taming Ultracold Molecules

Riding the coattails of cold atomic physics, researchers have demonstrated the ability to steer cold molecules into desired quantum states. Read More »

More Articles