Synopsis

Better view of a merging pair

Physics 4, s13
More realistic simulations of merging binary black holes should help guide experiments designed to detect gravity waves.
Credit: NASA/Tod Strohmayer (GSFC)/Dana Berry (Chandra X-Ray Observatory)

General relativity predicts that massive astrophysical objects in motion emit gravitational waves. There are indirect signs that this prediction is correct, such as the “spin down” in energy of pulsars, but a more direct test is to detect the waves with interferometry. Numerical simulations of the expected gravitational wave signatures for various events are useful guides to these experiments—the challenge is that these computations are tricky and require huge processing power. In a paper in Physical Review Letters, Carlos Lousto and Yosef Zlochower of the Rochester Institute of Technology, US, report their progress in generating gravitational wave forms for pairs of black holes as they orbit each other and merge.

The most promising black hole binaries for gravitational wave detection have mass ratios around m1/m21/100, but so far calculations have been limited to ratios around 1/15. To break this barrier, Lousto and Zlochower carry out a fully nonlinear calculation with improved numerical techniques and a modified gauge (which is related to how the spacetime coordinates are treated). After 1800 hours of computation with 768 processors, they obtain wave forms for the final two orbits of a binary system with mass ratio of 1/100 before the smaller black hole plunges into the larger one. The ability to calculate signatures for black hole binary mergers for these more extreme mass ratios should enable the large gravitational wave detection collaborations to better understand what they might be seeing. –David Voss


Subject Areas

AstrophysicsGravitation

Related Articles

Gamma-Ray Burst Tightens Constraints on Quantum Gravity
Particles and Fields

Gamma-Ray Burst Tightens Constraints on Quantum Gravity

An analysis of the brightest gamma-ray burst ever observed reveals no difference in the propagation speed of different frequencies of light—placing some of the tightest constraints on certain violations of general relativity. Read More »

Cosmic Correlations Show How Visible Matter Shapes the Universe
Cosmology

Cosmic Correlations Show How Visible Matter Shapes the Universe

A correlation between two astronomical observables reveals the influence of visible matter on a universe dominated by dark matter. Read More »

Flavor Profiling the Highest-Energy Neutrinos
Astrophysics

Flavor Profiling the Highest-Energy Neutrinos

A way to determine the flavors of ultrahigh-energy cosmic neutrinos observed by future detectors could help scientists understand the origin of these elusive particles. Read More »

More Articles