Synopsis: One-way sound

An acoustic diode made from linear metamaterials offers a more efficient way to control the propagation of sound than previous designs.
Synopsis figure
Credit: X-F. Li et al., Phys. Rev. Lett. (2010)

In an electronic circuit, diodes conduct current in only one direction. An analogous device, called an acoustic diode, exists for sound waves. Since these diodes are typically made from sonic crystals—artificial materials that only block sound waves that lie in a particular frequency range—they are often of limited practical use.

Writing in Physical Review Letters, Xue-Feng Li and colleagues at Nanjing University, China, and the California Institute of Technology report on a new acoustic diode design that manipulates the sonic crystal itself to achieve nonreciprocal propagation of sound. The device consists of a two-dimensional sonic crystal arranged in a mesh of square steel rods. By rotating the steel rods, Li et al. are able to manipulate the unit cell of the sonic crystal element to turn the diode on (sound waves only propagate one way) and off (sound waves can move back and forth). Furthermore, Li et al. make their device entirely from linear acoustic materials, which allows them to control sound propagation with a simpler and more efficient process, over a broader bandwidth, and with lower power consumption, compared to existing nonlinear sonic-crystal-based devices. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Metamaterials

Previous Synopsis

Interdisciplinary Physics

Freeze frame

Read More »

Next Synopsis

Plasma Physics

Big science in a small space

Read More »

Related Articles

Focus: Better Microwaves from a Metamaterial
Metamaterials

Focus: Better Microwaves from a Metamaterial

A system that produces radiation by sending electrons through a metamaterial waveguide could potentially generate high-power microwaves with high efficiency. Read More »

Focus: Light Switched Off by Weaker Beam
Metamaterials

Focus: Light Switched Off by Weaker Beam

An all-optical switch design uses an asymmetric waveguide that reduces the beam power requirements, which is essential for making such devices practical. Read More »

Focus: A Thermostat that Consumes No Energy
Energy Research

Focus: A Thermostat that Consumes No Energy

Experiments show that a region next to changing hot and cold areas can be maintained at a fixed temperature without consuming energy. Read More »

More Articles