Synopsis: Graphene with a twist

A small rotation between layers in multilayer graphene radically alters its electronic properties.
Synopsis figure
Credit: A. Luican et al., Phys. Rev. Lett. (2011)

Stacks of graphene are expected to possess drastically different electronic properties compared to their single-layer components, as a result of interlayer coupling. Theory dictates that graphene’s massless low-energy excitations should disappear, even for the simple bilayer structure. However, experiments have shown that, paradoxically, the electronic properties of single layers somehow survive in layered structures. Theorists have suggested that a relative rotation of one layer with respect to the one below it—a “twist” in the stacking—might be the resolution of the paradox.

Now, in a paper appearing in Physical Review Letters, Adina Luican and collaborators from Rutgers University and the Massachusetts Institute of Technology, both in the US, and the University of Manchester, UK, provide experimental proof of the influence of twisting on the band structure of bilayer graphene. Using scanning tunneling microscopy and spectroscopy, the researchers find that for twist angles above 20°, the electronic properties of the twisted layers are practically indistinguishable from those of single-layer graphene. Based on their measurements, Luican et al. conclude that at small angles, the massless Dirac fermion picture of graphene breaks down and the electronic spectrum is dominated by a saddle point feature, while at large rotation angles, the intersection point in the spectrum shifts to irrelevant high energies and the familiar Dirac energy dispersion is recovered. – Alexios Klironomos


Announcements

More Announcements »

Subject Areas

Graphene

Previous Synopsis

Soft Matter

Gels settle down

Read More »

Next Synopsis

Semiconductor Physics

Bulk carriers cannot take the strain

Read More »

Related Articles

Focus: New Form of Carbon Stores Lots of Gas
Graphene

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

Synopsis: Graphene Majoranas
Graphene

Synopsis: Graphene Majoranas

Graphene could host Majorana quasiparticles if brought into contact with a conventional superconductor. Read More »

Synopsis: Giving Graphene a Good Stretch  
Graphene

Synopsis: Giving Graphene a Good Stretch  

A specially shaped ribbon of single-layer carbon can produce a strong magnetic-like effect within the material when it is pulled on its ends. Read More »

More Articles