Synopsis

Early detection

Physics 4, s53
Quick detection of photogenerated electrons in a quantum dot may lead to a better method to transfer quantum information between optical and electrical media.
Credit: Courtesy of A. Pioda et al.

In a quantum dot, the spin of an electron can act as a unit of quantum information. The photon is the ideal carrier of this information, which it can convey undisturbed over large distances. Researchers are therefore always on the lookout for robust means to transfer a quantum state between the storage (electron spin) and the messenger (photon).

In recent years, the quantum dot has come to be seen as a useful source of photogenerated electrons, which can be probed by so-called single-shot measurements using quantum point contacts. That said, such detection techniques are hampered by the need to complete the detection process before the electron spin flips thermally. Now, Alessandro Pioda, at the University of Tokyo, and coauthors in Japan report in a paper in Physical Review Letters that they may have dealt with this limitation in quantum dots formed from GaAs-based semiconductor heterostructures. By manipulating the electrical properties of the dot, and hence the tunneling time across the dot, they tune the time it takes to detect photogenerated electrons, on occasion making it shorter than the spin-flip time. The short timescale and tunability allows them to determine the spin direction of electrons generated by circularly polarized light. The authors hope that the ability to transfer the polarization of a photon to the spin of an electron will some day lead to a device to coherently transfer quantum information between an optical and an electrical medium—a solid-state quantum repeater. – Sami Mitra


Subject Areas

Quantum InformationOpticsMesoscopics

Related Articles

Nuclear Decay Detected in the Recoil of a Levitating Bead
Nuclear Physics

Nuclear Decay Detected in the Recoil of a Levitating Bead

A levitating microparticle is observed to recoil when a nucleus embedded in the particle decays—opening the door to future searches of invisible decay products. Read More »

Giant Clams Are Models of Solar-Energy Efficiency
Optics

Giant Clams Are Models of Solar-Energy Efficiency

A theoretical model for the illumination of photosynthesizing algae in giant clams suggests principles for high efficiency collection of sunlight. Read More »

Measuring Qubits with “Time Travel” Protocol
Quantum Information

Measuring Qubits with “Time Travel” Protocol

Quantum sensing can benefit from entanglement protocols that can be interpreted as allowing qubits to go backward in time to choose an optimal initial state. Read More »

More Articles