Synopsis: Early detection

Quick detection of photogenerated electrons in a quantum dot may lead to a better method to transfer quantum information between optical and electrical media.
Synopsis figure
Credit: Courtesy of A. Pioda et al.

In a quantum dot, the spin of an electron can act as a unit of quantum information. The photon is the ideal carrier of this information, which it can convey undisturbed over large distances. Researchers are therefore always on the lookout for robust means to transfer a quantum state between the storage (electron spin) and the messenger (photon).

In recent years, the quantum dot has come to be seen as a useful source of photogenerated electrons, which can be probed by so-called single-shot measurements using quantum point contacts. That said, such detection techniques are hampered by the need to complete the detection process before the electron spin flips thermally. Now, Alessandro Pioda, at the University of Tokyo, and coauthors in Japan report in a paper in Physical Review Letters that they may have dealt with this limitation in quantum dots formed from GaAs-based semiconductor heterostructures. By manipulating the electrical properties of the dot, and hence the tunneling time across the dot, they tune the time it takes to detect photogenerated electrons, on occasion making it shorter than the spin-flip time. The short timescale and tunability allows them to determine the spin direction of electrons generated by circularly polarized light. The authors hope that the ability to transfer the polarization of a photon to the spin of an electron will some day lead to a device to coherently transfer quantum information between an optical and an electrical medium—a solid-state quantum repeater. – Sami Mitra


Announcements

More Announcements »

Subject Areas

Quantum InformationOpticsMesoscopics

Previous Synopsis

Materials Science

Switched on ferroelectrics

Read More »

Next Synopsis

Astrophysics

Tuning in to gravity

Read More »

Related Articles

Viewpoint: Hiding a Quantum Cache in Diamonds
Quantum Information

Viewpoint: Hiding a Quantum Cache in Diamonds

Entanglement purification, a vital enabler for practical quantum networks, has been shown to be feasible with secluded nuclear memories in diamond. Read More »

Viewpoint: Classical Simulation of Quantum Systems?
Optics

Viewpoint: Classical Simulation of Quantum Systems?

Richard Feynman suggested that it takes a quantum computer to simulate large quantum systems, but a new study shows that a classical computer can work when the system has loss and noise. Read More »

Viewpoint: Measuring Quantum Kicks from a Beam of Light
Optics

Viewpoint: Measuring Quantum Kicks from a Beam of Light

Force sensors levitated by light have reached the quantum regime, in which their sensitivity is limited by the momentum kicks of individual photons. Read More »

More Articles