Synopsis: Hot electrons, cold lattice

How a material’s structure affects the conduction of ultrahot electrons is being explored with one of the world’s most powerful lasers.
Synopsis figure
Credit: P. McKenna et al., Phys. Rev. Lett. (2011)

The Vulcan laser at Rutherford Appleton Laboratory is capable of producing up to a petawatt (1015 watts) of power in a short pulse. Such an intense light source can quickly heat up the loosely bound electrons in a target to tens of thousands of degrees, while the ions in the target temporarily remain relatively “cold.” As reported in Physical Review Letters, the ability to create such an out-of-equilibrium situation is allowing researchers to explore an interesting materials regime: the effect of crystal structure on the conduction of ultrahot electrons.

Paul McKenna at the University of Strathclyde in Glasgow and colleagues used picosecond-long pulses of 200 joule light from the Vulcan laser to produce a hot current in three carbon-based targets: single-crystal diamond, vitreous carbon, and pyrolytic carbon. The team imaged the spread of the hot current through the material indirectly by looking at the profile of proton beams produced by electron-induced fields at the rear of the target.

The electrons spread out most uniformly in diamond, while in the other forms of carbon, they tend to follow a more filamentary path. McKenna et al. explain their results using simulations, which show that although diamond is an insulator at room temperature, when its electrons are heated to extreme temperatures, diamond’s pristine structure offers little resistance compared to the disordered structure of vitreous carbon.

The findings could play a role in determining the best target materials for applications in laser-driven fusion and ion acceleration. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Plasma PhysicsMaterials Science

Previous Synopsis

Next Synopsis

Spintronics

Same difference

Read More »

Related Articles

Focus: Photons Brake the Sun
Plasma Physics

Focus: Photons Brake the Sun

Detailed solar observations and theory suggest that photons remove angular momentum from the Sun, explaining why the Sun’s surface spins more slowly than its core. Read More »

Synopsis: Plasma Mirror Mimics Evaporating Black Hole
Gravitation

Synopsis: Plasma Mirror Mimics Evaporating Black Hole

A proposal for using an accelerated plasma mirror to study the black hole information paradox elevates a thought experiment into a potential reality.   Read More »

Synopsis: Getting Plasma in a Twist
Optics

Synopsis: Getting Plasma in a Twist

Laser vortex beams can exchange their optical angular momentum with a plasma from which they are reflected. Read More »

More Articles