Synopsis: Guided by voltage

Alternating voltages act as a conveyer belt for transporting excitons.
Synopsis figure
Credit: A. Winbow et al., Phys. Rev. Lett. (2011)

In a solid, an exciton is a bound state between an excited electron and the positively charged hole it leaves behind. So-called indirect excitons, which can exist in materials and artificial structures in which the electrons and holes can each be confined in different layers, have particularly long recombination times. Like electrons, these long-lived particles could provide a means to transport information, but because they are neutral overall, they are harder to move electrically.

Writing in Physical Review Letters, Alexander Winbow at the University of California, San Diego, and colleagues demonstrate they can transport excitons using alternating (ac) voltages that couple to the exciton’s large dipole moments. The team grew a “coupled quantum well,” in which they could produce indirect excitons optically, on a gallium-arsenide surface. By applying an ac voltage to an electrode grid that overlays the device, they were able to create a wavelike potential for the excitons, which then slide across the sample as though on a conveyer belt. Sample regions with a higher density of excitons luminesce, allowing the team to track the location of the excitons.

The device transports excitons in a manner that is similar to the way electrons are guided in charge-coupled devices (CCDs), and could lead to new applications of exciton electronics, as well as answer more fundamental questions about the delocalization-localization transition of excitons. – Daniel Ucko


Features

More Features »

Announcements

More Announcements »

Subject Areas

Semiconductor PhysicsMesoscopics

Previous Synopsis

Spintronics

Same difference

Read More »

Next Synopsis

Graphene

Carbon flowers

Read More »

Related Articles

Synopsis: Flip-Flopping the Bands
Spintronics

Synopsis: Flip-Flopping the Bands

A pair of semiconductor quantum wells with an inverted band structure hosts electrons whose spins are almost all in the same quantum state.   Read More »

Focus: Negative Resistance with a Single Atom
Nanophysics

Focus: Negative Resistance with a Single Atom

Current flowing through a single silicon atom can be made to decrease with increasing voltage, potentially allowing the integration of a new type of component into microelectronic circuits. Read More »

Synopsis: Valley of the Dichalcogenides
Semiconductor Physics

Synopsis: Valley of the Dichalcogenides

A magnetic field can be used to change the “valley” states that emerge in certain semiconductors. Read More »

More Articles