Synopsis: The nuclear option

Optical clocks based on nuclear energy levels may offer unprecedented precision and a chance to find out whether fundamental constants change over time.
Synopsis figure
Credit: C. Campbell et al., Phys. Rev. Lett. (2011)

Atomic clock makers look for two important characteristics when they choose atoms to build their time pieces. First, the energy levels that generate the clock signal must be narrow and well defined. And second, the energy levels should be immune from external electromagnetic fields so that the clock rate doesn’t vary with, for example, position near Earth.

Several atomic species with these qualities exist, but researchers would like to take optical clocks to an even higher level of precision and stability. One approach would be to find nuclear energy levels with the right features for clocks. Nuclei have extremely sharp energy levels, but typically the excitation energies range from kilo-electron-volts to mega-electron-volts—far above the several-eV photon energies that are available to make optical clocks. Now, Corey Campbell, Alexander Radnaev, and Alexander Kuzmich of the Georgia Institute of Technology report in Physical Review Letters their studies of thorium nuclei that may be just right for clock building.

One likely candidate, thorium-229, has a pair of low-lying nuclear states separated only by 7.6eV. As a first step in harnessing these levels, the authors trap and cool the triply charged form of Th-229 into a regular array called a Wigner crystal, which allows spatial localization of each nucleus. Future work will include addressing single ions in the crystal and spectroscopic studies of the nuclear clock transition. This could not only lead to clocks of unusual precision, but it might also help answer questions about whether fundamental physical constants are changing over time. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Next Synopsis

Soft Matter

Laws of the rings

Read More »

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Viewpoint: Ionization Delays That Stand Out
Optics

Viewpoint: Ionization Delays That Stand Out

Attosecond-resolution experiments have determined the delay in an electron’s emission from a molecule after being ionized with light. Read More »

Focus: Giant Molecule Made from Two Atoms
Atomic and Molecular Physics

Focus: Giant Molecule Made from Two Atoms

Experiments confirm the existence of 1-micrometer-sized molecules made of two cesium atoms by showing that their binding energies agree with predictions.   Read More »

More Articles