Synopsis

New place to search for Efimov states

Physics 4, s85
Three-body bound states, known to form among spherically symmetric atoms, should also exist for dipole molecules.
Credit: Y. Wang, Phys. Rev. Lett. (2011)

Tractable three-body problems are rare, which is why Vitaly Efimov’s study in 1970 proposing that bound states could exist between three interacting bosons was so intriguing. It took more than 30 years, though, to observe Efimov states in an ultracold gas of cesium atoms, in which interactions could be controlled with a magnetic field. Now, writing in Physical Review Letters, theorists suggest similar states should also exist between dipolar molecules.

In his prediction, Efimov assumed the interacting bosons were spherically symmetric. In their new work, Yujun Wang and colleagues at JILA, at the University of Colorado, Boulder, use numerical methods to look for bound states between molecules that have an electric dipole—an extended structure that greatly complicates the calculations. The group shows that such dipolar Efimov states are in fact long-lived and “universal,” meaning they don’t depend on the molecules’ detailed structure. (The states only exist when the separation between the molecules is large compared with the length of their dipole moment.)

Wang et al.’s prediction is timely, as it is only in the last two to three years that experimentalists have been able to cool the molecules in a gas to their absolute ground state and study and manipulate the dipole interactions between them. – Jessica Thomas


Subject Areas

Atomic and Molecular Physics

Related Articles

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Ejected Electron Slows Molecule’s Rotation
Chemical Physics

Ejected Electron Slows Molecule’s Rotation

Sometimes a rotating molecule can transition to a new state only if an electron carries away some of the molecule’s angular momentum. Read More »

Probing the Rotational Doppler Effect with a Single Ion
Atomic and Molecular Physics

Probing the Rotational Doppler Effect with a Single Ion

A light beam with orbital angular momentum can produce the rotational analog of the Doppler effect on an ion. Read More »

More Articles