Synopsis: Twist or twirl

Depending on their width, certain ribbon-forming biomolecules assume either twisted or spiral shapes.
Synopsis figure
Credit: Courtesy of L. Ziserman et al.

Many biomolecules such as nucleic acids, proteins, and lipids exhibit chirality that depends on how the molecules form, or self-assemble, into different shapes.

As their name suggests, chiral amphiphiles are molecules that are found in both aqueous and fatty environments. They self-assemble into myriad shapes, ranging from dotlike micelles to tubular micelles to two-dimensional sheets.

In a paper in Physical Review Letters, Lior Ziserman at the Technion-Israel Institute of Technology and colleagues, also in Israel, study a class of ribbon-forming chiral amphiphiles. With their cryogenic transmission electron microscopy imaging the authors capture a dynamic transition along a single ribbon that changes shape from twisted (negative Gaussian curvature) to spiral (zero Gaussian curvature). Quantitative analysis shows that the width of the ribbon determines the nature of this morphology. While the result is not unexpected—Monte Carlo simulations in 2004 predicted how curvature in certain molecules would depend on their physical properties, and subsequent analytic theory has predicted that change would behave as a phase transition—this is a useful experimental confirmation of a morphological change determined by ribbon width in such pervasive biological structures. – Sami Mitra


More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

New place to search for Efimov states

Read More »

Related Articles

Focus: How Anesthesia Switches Off Consciousness
Biological Physics

Focus: How Anesthesia Switches Off Consciousness

A computer model of a network of neurons shows that a sudden breakdown in the net's ability to transmit information mimics the brain wave changes that accompany anesthesia. Read More »

Synopsis: Runaway Brain
Biological Physics

Synopsis: Runaway Brain

Ultralight wirelessly powered devices can stimulate the neurons of a mouse as it moves freely over a large area. Read More »

Synopsis: Bacterial Superfluids
Fluid Dynamics

Synopsis: Bacterial Superfluids

Self-propelling bacteria can reduce the viscosity of a fluid to zero through a collective organization of their swimming. Read More »

More Articles