Synopsis

The quantum side of detectors

Physics 4, s109
By applying environmental noise to a photon detector, researchers have identified the boundary where the device switches from a quantum device to a classical one.
V. D’Auria et al., Phys. Rev. Lett. (2011)

In quantum physics, a particle can occupy separate states at the same time, but once measured—or disturbed by the environment—it must choose a particular state in which to reside. The dynamics of this process, called decoherence, has been extensively studied over the years. Recently, physicists have investigated a process reminiscent of this phenomenon, not for a quantum state but for a measurement apparatus. A new experiment reported in Physical Review Letters has quantified how robust the quantum nature of detectors is.

Physicists have been able to characterize the quantum behavior of different photon counters by observing the detector response to a variety of photon inputs. When this data is mapped to a kind of probability distribution, some of the probabilities turn up negative, which is a telltale quantum signature.

Virginia D’Auria and her colleagues at the Kastler Brossel Laboratory in Paris, France, wanted to test the quantum limits of such photon detectors. To follow this process and observe the transition of the device from the quantum to the classical world, the researchers applied varying levels of noise to the detector. They showed that the characteristic negative probability values disappeared when the noise increased to roughly half the detector’s efficiency. – Michael Schirber


Subject Areas

Quantum InformationOptics

Related Articles

Spinning Up Rydberg Atoms Extends Their Life
Quantum Information

Spinning Up Rydberg Atoms Extends Their Life

Researchers record the longest Rydberg-atom lifetime by placing strontium atoms in “circular” states, where the outer electrons move in planet-like orbits. Read More »

Fluxonium Qubits Under Control
Quantum Physics

Fluxonium Qubits Under Control

By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate. Read More »

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

More Articles