Synopsis: The quantum side of detectors

By applying environmental noise to a photon detector, researchers have identified the boundary where the device switches from a quantum device to a classical one.
Synopsis figure
V. D’Auria et al., Phys. Rev. Lett. (2011)

In quantum physics, a particle can occupy separate states at the same time, but once measured—or disturbed by the environment—it must choose a particular state in which to reside. The dynamics of this process, called decoherence, has been extensively studied over the years. Recently, physicists have investigated a process reminiscent of this phenomenon, not for a quantum state but for a measurement apparatus. A new experiment reported in Physical Review Letters has quantified how robust the quantum nature of detectors is.

Physicists have been able to characterize the quantum behavior of different photon counters by observing the detector response to a variety of photon inputs. When this data is mapped to a kind of probability distribution, some of the probabilities turn up negative, which is a telltale quantum signature.

Virginia D’Auria and her colleagues at the Kastler Brossel Laboratory in Paris, France, wanted to test the quantum limits of such photon detectors. To follow this process and observe the transition of the device from the quantum to the classical world, the researchers applied varying levels of noise to the detector. They showed that the characteristic negative probability values disappeared when the noise increased to roughly half the detector’s efficiency. – Michael Schirber


Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Nanophysics

Nano knitting

Read More »

Next Synopsis

Related Articles

Viewpoint: Hiding a Quantum Cache in Diamonds
Quantum Information

Viewpoint: Hiding a Quantum Cache in Diamonds

Entanglement purification, a vital enabler for practical quantum networks, has been shown to be feasible with secluded nuclear memories in diamond. Read More »

Viewpoint: Classical Simulation of Quantum Systems?
Optics

Viewpoint: Classical Simulation of Quantum Systems?

Richard Feynman suggested that it takes a quantum computer to simulate large quantum systems, but a new study shows that a classical computer can work when the system has loss and noise. Read More »

Viewpoint: Measuring Quantum Kicks from a Beam of Light
Optics

Viewpoint: Measuring Quantum Kicks from a Beam of Light

Force sensors levitated by light have reached the quantum regime, in which their sensitivity is limited by the momentum kicks of individual photons. Read More »

More Articles