Synopsis: Topological catalysis

Protected surface states of topological insulators could be exploited to enhance surface reaction dynamics.
Synopsis figure
H. Chen et al., Phys. Rev. Lett. (2011)

When they occur at the surface of a material, electronic states are most vulnerable to contamination and defects. One of the fascinating aspects of the recently discovered topological insulators—materials that are bulk insulators but have conducting surface states—is the robustness of the surface states to perturbations. While this property has mostly been a signature of a topological insulator, an intriguing idea is to exploit this robustness for studying the physics of surface interactions.

In a paper published in Physical Review Letters, Hua Chen from the University of Tennessee and collaborators report a theoretical study of carbon monoxide oxidation. Using density-functional calculations, they find that the robust topological surface states significantly enhance the adsorption energy for both carbon monoxide and oxygen molecules. Effectively, the topological surface states act as an electron bath, making oxygen molecules more prone to dissociate on the gold-covered topological insulator, something oxygen does not do on pure gold. These findings have potential implications for surface science as well as catalysis. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Semiconductor PhysicsChemical Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Dirac points multiply in the presence of a BEC

Read More »

Related Articles

Viewpoint: The Calisthenics of Surface Femtochemistry
Chemical Physics

Viewpoint: The Calisthenics of Surface Femtochemistry

Application of a femtosecond spectroscopy technique to a copper surface has allowed the desorption of carbon monoxide molecules to be tracked with unprecedented detail. Read More »

Synopsis: Valley of the Dichalcogenides
Semiconductor Physics

Synopsis: Valley of the Dichalcogenides

A magnetic field can be used to change the “valley” states that emerge in certain semiconductors. Read More »

Viewpoint: Deciphering Water’s Dielectric Constant
Chemical Physics

Viewpoint: Deciphering Water’s Dielectric Constant

The combination of two spectroscopic techniques reveals the microscopic mechanisms that control the behavior of water’s dielectric constant. Read More »

More Articles