Synopsis: Rotating the spin of an exciton

Researchers use a laser pulse to manipulate excitons confined in quantum dots.
Synopsis figure

Many of the approaches taken with the aim of achieving quantum information processing involve manipulating spins in semiconductor quantum dots. The spins in question belong to electrons confined in the dot, which are probed and controlled by optical or electromagnetic means. An intriguing alternative possibility is manipulating other spinful entities, like an electron-hole pair (exciton), created by illuminating the dot with laser light.

In a paper published in Physical Review Letters, Eilon Poem and collaborators from the Technion in Israel, demonstrate the first rotation of the spin of a confined exciton by a single laser pulse. Despite the short (about a nanosecond) lifetime of the exciton, a property which makes its manipulation quite challenging, many spin operations are, in principle, possible with the use of suitably short (picosecond long) laser pulses. It is too early to tell if this development will have the same appeal as the manipulation of electron spins in these devices. While both methods are conceptually similar, there is yet a fundamental difference between them. While the polarization of light can be fully converted into an exciton spin polarization, it cannot be fully converted into electron spin polarization. – Alex Klironomos


Announcements

More Announcements »

Subject Areas

Semiconductor Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Valley of the Dichalcogenides
Semiconductor Physics

Synopsis: Valley of the Dichalcogenides

A magnetic field can be used to change the “valley” states that emerge in certain semiconductors. Read More »

Viewpoint: Chasing the Exciton Condensate
Semiconductor Physics

Viewpoint: Chasing the Exciton Condensate

Unusual interactions between charges have been observed in two closely separated graphene bilayers, a promising system in which to create a condensate of electron-hole pairs. Read More »

Viewpoint: Precise Layering of Organic Semiconductors
Semiconductor Physics

Viewpoint: Precise Layering of Organic Semiconductors

Researchers have fabricated high-quality organic semiconductors only a few molecular layers thick, revealing how the crystal structure affects the electronic properties. Read More »

More Articles