Synopsis: Diffused by Symmetry

The symmetry of a molecule may affect how it adsorbs on a surface.
Synopsis figure
T. Sonnleitner et al., Phys. Rev. Lett. (2011)

Molecules adsorbed on a surface do not necessarily stay in place but move around because of diffusion. Surfaces can have a preferred direction due to anisotropy, restricting molecular motion to one dimension. For complex molecules, the symmetry of the molecule itself can also have an effect on how it moves.

Writing in Physical Review Letters, Tobias Sonnleitner and colleagues at the University of Regensburg, Germany, present a scanning tunneling microscopy study of Cu(II)-tetraazaphthalocyanine molecules on a NaCl surface. This molecule is of interest since it has four isomers with different symmetries. The authors find that the isomers show qualitatively different diffusion behavior, and propose that the symmetry of the adsorbed molecule affects this behavior. Because NaCl is an insulator, the adsorbed molecules are not expected to interact electronically as strongly as they would with a metallic surface, so symmetry effects play a bigger role.

The authors are careful to state that no direct selection rules exist with which to predict symmetry-based diffusion of molecules on a surface. However, their work provides new insight into the role of symmetry in surface science, particularly for adsorption processes of complex molecules. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Chemical PhysicsMaterials Science

Previous Synopsis

Nuclear Physics

Phonons in a Stellar Crust

Read More »

Next Synopsis

Nuclear Physics

Benchmarking the Standard Model

Read More »

Related Articles

Synopsis: Spin Transport in Room-Temperature Germanium
Magnetism

Synopsis: Spin Transport in Room-Temperature Germanium

Germanium layers can carry spin-polarized currents over several hundred nanometers at room temperature, a key asset for spintronic applications. Read More »

Synopsis: A Polariton Fridge for Semiconductors
Optics

Synopsis: A Polariton Fridge for Semiconductors

A gas of polaritons can serve as a coolant fluid that transports heat away from a semiconductor microcavity. Read More »

Viewpoint: The Quantum Hall Effect Gets More Practical
Magnetism

Viewpoint: The Quantum Hall Effect Gets More Practical

Thin films of magnetic topological insulators can exhibit a nearly ideal quantum Hall effect without requiring an applied magnetic field. Read More »

More Articles