Synopsis: Diffused by Symmetry

The symmetry of a molecule may affect how it adsorbs on a surface.
Synopsis figure
T. Sonnleitner et al., Phys. Rev. Lett. (2011)

Molecules adsorbed on a surface do not necessarily stay in place but move around because of diffusion. Surfaces can have a preferred direction due to anisotropy, restricting molecular motion to one dimension. For complex molecules, the symmetry of the molecule itself can also have an effect on how it moves.

Writing in Physical Review Letters, Tobias Sonnleitner and colleagues at the University of Regensburg, Germany, present a scanning tunneling microscopy study of Cu(II)-tetraazaphthalocyanine molecules on a NaCl surface. This molecule is of interest since it has four isomers with different symmetries. The authors find that the isomers show qualitatively different diffusion behavior, and propose that the symmetry of the adsorbed molecule affects this behavior. Because NaCl is an insulator, the adsorbed molecules are not expected to interact electronically as strongly as they would with a metallic surface, so symmetry effects play a bigger role.

The authors are careful to state that no direct selection rules exist with which to predict symmetry-based diffusion of molecules on a surface. However, their work provides new insight into the role of symmetry in surface science, particularly for adsorption processes of complex molecules. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Chemical PhysicsMaterials Science

Previous Synopsis

Nuclear Physics

Phonons in a Stellar Crust

Read More »

Next Synopsis

Nuclear Physics

Benchmarking the Standard Model

Read More »

Related Articles

Synopsis: Jiggling Graphene
Graphene

Synopsis: Jiggling Graphene

The random quivering of graphene membranes could be exploited to generate electricity. Read More »

Viewpoint: How to Fracture a Fluid
Fluid Dynamics

Viewpoint: How to Fracture a Fluid

High-speed imaging shows that fluids can break like brittle glass under the right conditions. Read More »

Synopsis: Rydberg Atom Takes a Dip in the Cold Sea
Atomic and Molecular Physics

Synopsis: Rydberg Atom Takes a Dip in the Cold Sea

A Rydberg atom immersed in a dense cloud of ultracold neutral atoms can undergo two chemical processes. Read More »

More Articles