Synopsis: Diffused by Symmetry

The symmetry of a molecule may affect how it adsorbs on a surface.
Synopsis figure
T. Sonnleitner et al., Phys. Rev. Lett. (2011)

Molecules adsorbed on a surface do not necessarily stay in place but move around because of diffusion. Surfaces can have a preferred direction due to anisotropy, restricting molecular motion to one dimension. For complex molecules, the symmetry of the molecule itself can also have an effect on how it moves.

Writing in Physical Review Letters, Tobias Sonnleitner and colleagues at the University of Regensburg, Germany, present a scanning tunneling microscopy study of Cu(II)-tetraazaphthalocyanine molecules on a NaCl surface. This molecule is of interest since it has four isomers with different symmetries. The authors find that the isomers show qualitatively different diffusion behavior, and propose that the symmetry of the adsorbed molecule affects this behavior. Because NaCl is an insulator, the adsorbed molecules are not expected to interact electronically as strongly as they would with a metallic surface, so symmetry effects play a bigger role.

The authors are careful to state that no direct selection rules exist with which to predict symmetry-based diffusion of molecules on a surface. However, their work provides new insight into the role of symmetry in surface science, particularly for adsorption processes of complex molecules. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Chemical PhysicsMaterials Science

Previous Synopsis

Nuclear Physics

Phonons in a Stellar Crust

Read More »

Next Synopsis

Nuclear Physics

Benchmarking the Standard Model

Read More »

Related Articles

Focus: New Form of Carbon Stores Lots of Gas
Graphene

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

Synopsis: Trees Crumbling in the Wind
Materials Science

Synopsis: Trees Crumbling in the Wind

Lab experiments with wooden rods help explain why all trees—irrespective of size or species—break when battered by wind blowing at the same critical speed. Read More »

Synopsis: Growing Crystals in Macrosteps
Materials Science

Synopsis: Growing Crystals in Macrosteps

Simulations describe how crystals are able to grow past impurities by forming multilayer steps. Read More »

More Articles