Synopsis

Counting Down to Zero Neutrinos

Physics 4, s173
An experiment looking for evidence that a neutrino is its own antiparticle makes a crucial step forward.
Enriched Xenon Observatory

Are neutrinos their own antiparticles? Clear proof would come from observing a neutrinoless double-beta decay—the simultaneous transmutation of two neutrons into two protons, without the emission of neutrinos. Looking for such events, which have never been seen before, is a primary goal of experiments at the newly commissioned Enriched Xenon Observatory (EXO).

Xenon- 136 is a nominally stable isotope, but it is predicted to undergo double-beta decay with the emission of two neutrinos. The lifetime of this “normal” double-beta decay, which occurs by a different process than the neutrinoless decay, is a rare event that has so far only been estimated for xenon. Measuring it would help theorists confirm they understand the initial and final states of the two-neutrino process, which are the same as those involved in the neutrinoless decay.

In a paper appearing in Physical Review Letters, the EXO collaboration, which includes scientists from around the world, reports the first measurement of the two-neutrino double-beta decay for xenon- 136. The team used the EXO- 200, a prototype experiment located at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, which contains 200 kilograms of liquid xenon enriched with xenon- 136.

The team finds a half-life for the decay of 2.1×1021 years. With this important input now in hand, theorists and experimentalists working at EXO are getting closer to understanding the fundamental nature of neutrinos. – Abhishek Agarwal


Subject Areas

Particles and FieldsNuclear Physics

Related Articles

The Most Precise Value of the Top-Quark Mass to Date
Particles and Fields

The Most Precise Value of the Top-Quark Mass to Date

Researchers at CERN have significantly increased the precision of the measured value of the top-quark mass, a key input for making standard-model calculations. Read More »

A Puzzling Excess of Cosmic Deuterons
Nuclear Physics

A Puzzling Excess of Cosmic Deuterons

A long-running experiment aboard the International Space Station has found an unexpected population of cosmic rays made of heavy hydrogen ions. Read More »

One Field to Rule Them All
Cosmology

One Field to Rule Them All

Theorists explain why cosmic inflation might appear to be driven by a single inflaton field, even if it had actually been driven by two or more such fields. Read More »

More Articles