Synopsis

Ringing Nuclear Resonances

Physics 4, s175
Gamma-ray scattering reveals the details of an elusive nuclear resonance.
Courtesy Seth Henshaw, Duke University

Neutrons and protons in a nucleus can collectively oscillate against one another in what are called giant multipole resonances, a bit like the vibrational modes of a bell struck by a hammer. Researchers need to gather detailed and precise information on each of the multipole resonances to formulate a reliable equation of state for nuclear matter. The first two modes in the series, the isovector (when neutrons and protons oscillate out-of-phase) dipole resonance and the isoscalar (when neutrons and protons oscillate in phase) quadrupole resonance have already been systematically studied for a range of nuclear masses. The isovector giant quadrupole resonance has been much harder to tackle owing to the higher energies and low cross sections for exciting this mode.

Writing in Physical Review Letters, Seth Henshaw at Duke University, North Carolina, and colleagues report their measurements of the isovector giant quadrupole resonance in bismuth-209. The team developed a novel technique to measure Compton scattering of linearly-polarized monoenergetic gamma rays from the High Intensity Gamma Source at Duke. Measuring the asymmetries between horizontally and vertically scattered gamma rays allowed for precise determination of the resonance parameters (energy, width, and strength). Future efforts will involve measurement of other nuclei over a range of masses to compile a comprehensive database. The information thus gained should permit a better understanding of nuclear matter in extreme environments such as neutron stars. – David Voss


Subject Areas

Nuclear Physics

Related Articles

Nuclear Physics from Particle Physics
Particles and Fields

Nuclear Physics from Particle Physics

A new theoretical analysis connects the results of high-energy particle experiments at the Large Hadron Collider with three-proton correlations inside nuclei. Read More »

Heavy Element Quandary in Stars Worsened by New Nuclear Data
Astrophysics

Heavy Element Quandary in Stars Worsened by New Nuclear Data

A widening gap between the cerium-140 abundance predicted by theories and that measured in observations of certain stars indicates a potential need for updated models of element formation. Read More »

Colossal Magnetic Field Detected in Nuclear Matter
Nuclear Physics

Colossal Magnetic Field Detected in Nuclear Matter

Collisions of heavy ions briefly produced a magnetic field 1018 times stronger than Earth’s, and it left observable effects. Read More »

More Articles