Synopsis: Even Flow

An obstacle at the exit of a silo relieves local pressure, aiding the flow of small particles that might otherwise clog.
Synopsis figure
I. Zuriguel et al., Phys. Rev. Lett. (2011)

Fine particles, like flour or sugar, passing through a constriction (for example, a funnel) can clog for no apparent reason. Even when the particles are much smaller than the aperture, clogging occurs, as the particles, under pressure from the medium, form an arch at the outlet. This behavior is the same for grain discharging from a silo, people escaping a room, and traffic congestion.

Placing an obstacle just before the exit is known to inhibit the formation of transient clogs that increase the exit time; however, the exact way in which the obstacle decreases clogging is still an open question. Writing in Physical Review Letters, Iker Zuriguel and collaborators at the Universidad de Navarra, Spain, have performed experiments on a two-dimensional model of a silo with an obstacle at different distances from the silo exit. For all cases, except for when the obstacle is very close to the outlet, the clogging probability is smaller than without the obstacle, and by choosing the position of the obstacle carefully, the probability that a clog will form is reduced by 2 orders of magnitude. The clog probability is lowest when the distance of the obstacle to the outlet is about the same as the size of the outlet.

The authors suggest that the obstacle effectively reduces the pressure spots that lead to the formation of arc structures by the outlet. Although this study only treats two-dimensional silos, it should be applicable to three-dimensional flows as well. – Daniel Ucko


More Features »


More Announcements »

Subject Areas

Soft Matter

Previous Synopsis

Atomic and Molecular Physics

Laser Cooling Tuned to the UV

Read More »

Next Synopsis

Quantum Information

Mind the Gap

Read More »

Related Articles

Viewpoint: A Crumpled Sheet’s Remembrance of Things Past
Soft Matter

Viewpoint: A Crumpled Sheet’s Remembrance of Things Past

Crumpled sheets “remember” the application and removal of a force for days, a newly discovered memory effect that suggests crumpled sheets are a lot like glasses. Read More »

Focus: <i>Video</i>—Liquid Drop Bursts into Thousands of Pieces
Soft Matter

Focus: Video—Liquid Drop Bursts into Thousands of Pieces

A drop of water-alcohol mixture on a layer of oil was caught on video bursting into thousands of tiny droplets. Read More »

Synopsis: Polymer Alchemy
Soft Matter

Synopsis: Polymer Alchemy

Light could alter the chemistry of multicomponent polymers, allowing for the control of structures they form. Read More »

More Articles