Synopsis: Floats Like a Pyramid

Paper pyramids hovering in an oscillating air column enlighten us about the stability of flying insects.
Synopsis figure
B. Liu et al., Phys. Rev. Lett. (2012)

Insects fly by moving their wings in a flapping motion. Fixed-wing flight is a relatively simple physical problem, but flight through the flapping of wings is trickier, not only for propulsion but also for maintaining balance and keeping aloft. While some progress has been made with robotic wings, simulating an insect in its entirety, rather than just its wings, is complicated. Whether insects in flight are intrinsically stable or unstable is therefore still an open question.

Writing in Physical Review Letters, Bin Liu and co-workers at New York University present results from experiments on an inanimate pyramid-shaped flyer, or “bug.” Their choice of the shape was made in view of previous experiments with tethered flight, which showed that pyramids could hover in an airflow. Instead of having the flyer move its parts, they used a subwoofer (a low-frequency audio speaker) to create vertical oscillations in a column of air. Varying the center of mass of the “bugs,” the team observed variations in stability and hovering for various configurations, and now presents a comprehensive study of flight behavior that is correlated with the anatomy of the flyer. While the “bug” is far from a realistic analogy for an insect, the unsteady flow mechanisms revealed through these experiments can help address current disagreements among models that assess the intrinsic stability of flying insects. The next step could be to replace the pyramids with a mobile robot for a better simulation. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Fluid DynamicsBiological PhysicsInterdisciplinary Physics

Previous Synopsis

Biological Physics

Birth Rhythms

Read More »

Next Synopsis

Interdisciplinary Physics

Ponytail physics

Read More »

Related Articles

Synopsis: Maintaining the Sequence
Biological Physics

Synopsis: Maintaining the Sequence

Theoretical calculations indicate that an electrospray-based technique could correctly read out the amino acid sequence of protein molecules. Read More »

Synopsis: Ribbon Creases and Twists
Mechanics

Synopsis: Ribbon Creases and Twists

Experiments with paper ribbons show how one can predict the final shape of a loop when the ribbon’s ends are pulled tight. Read More »

Synopsis: Neutron Stars in a Petri Dish
Nuclear Physics

Synopsis: Neutron Stars in a Petri Dish

Simulations of the dense matter in a neutron star’s crust predict the formation of structures that resemble those found in biological membranes. Read More »

More Articles