Synopsis: Nuclear Clocks

An updated proposal for a clock based on the excited states of a nucleus could keep time better than existing clocks that use electronic states.

The best atomic clocks approach an accuracy of about a part in 1017, but that’s not good enough for researchers looking for possible tiny drifts in fundamental constants. A newly refined proposal based on nuclear excitations in a single ion could, in principle, do almost 100 times better.

The energy to create an excited nuclear state should be much less sensitive to stray external fields than are the electronic excitations used in the best existing atomic clocks. In particular, in 2003, researchers proposed exploiting a relatively low-energy transition in thorium-229 nuclei, which could be excited with ultraviolet lasers. In Physical Review Letters, Corey Campbell at the Georgia Institute of Technology, Atlanta, and co-workers note that a different transition in the same nucleus should be even less sensitive to external fields.

The team proposes a clock based on a single trapped thorium ion, and analyzes a dozen different effects that could limit its accuracy. The two biggest potential errors are stray electric fields that nudge the ion away from the sweet spot of the trap, and uncertainty about the height of the trap. The gravitational effect of even a 1 millimeter height error would cause a significant frequency shift, according to general relativity. Combining all of the errors, the researchers estimate a timing accuracy of 1.5 parts in 1019, corresponding to a 70-millisecond error over the entire age of the universe. – Don Monroe


Announcements

More Announcements »

Subject Areas

OpticsNuclear Physics

Previous Synopsis

Nonlinear Dynamics

Greed is Good

Read More »

Next Synopsis

Quantum Information

Send in the Clones

Read More »

Related Articles

Synopsis: Position Detector Approaches the Heisenberg Limit
Quantum Physics

Synopsis: Position Detector Approaches the Heisenberg Limit

The light field from a microcavity can be used to measure the displacement of a thin bar with an uncertainty that is close to the Heisenberg limit. Read More »

Viewpoint: Next Generation Clock Networks
Atomic and Molecular Physics

Viewpoint: Next Generation Clock Networks

Free-space laser links have been used to synchronize optical clocks with an unprecedented uncertainty of femtoseconds. Read More »

Focus: How to Make an Intense Gamma-Ray Beam
Optics

Focus: How to Make an Intense Gamma-Ray Beam

Computer simulations show that blasting plastic with strong laser pulses could produce gamma rays with unprecedented intensity, good for fundamental physics experiments and possibly cancer treatments. Read More »

More Articles