Synopsis: A Noisy Junction

White noise in a nanoscale junction tells us how nonelectronic factors affect conduction.
Synopsis figure
M. Kumar et al., Phys. Rev. Lett. (2012)

Electrons at the nanoscale behave quite differently from those in the bulk as their wavelength starts to be relevant. As an example, individual molecular and atomic vibrational modes dominate in the differential conductance of nanoscale materials, and the discrete character of the charges manifests itself as white noise (“shot noise”). Experimentalists can study features of the white noise to gather information on transport characteristics in nanoscale junctions and constrictions.

Writing in Physical Review Letters, Manohar Kumar, at Leiden University in the Netherlands, and co-workers present results from a study on a mechanically controlled break junction—a deliberately severed atomic contact between two gold wires. The team looked at an inelastic scattering contribution to shot noise in several configurations of nanowires. The sign of this contribution, which had been predicted but not observed, changes with the magnitude of the transmission through the conduction channel. It is positive for high transmission values but negative for low ones, a property that the authors ascribe to coherent two-electron processes mediated by electron-phonon scattering as well as the Pauli exclusion principle. These results should provide more quantitative answers to how atomic vibrations and electronic noise affect molecular electronics. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Nanophysics

Previous Synopsis

Fluid Dynamics

Survival of the Fitter

Read More »

Next Synopsis

Chemical Physics

Only on Paper

Read More »

Related Articles

Focus: Voltage Fluctuations Converted to Electricity
Mesoscopics

Focus: Voltage Fluctuations Converted to Electricity

In a step toward the conversion of excess heat into electric current, researchers demonstrate a device that generates current in response to voltage fluctuations that mimic heat. Read More »

Viewpoint: Single Dot Meets Single Ion
Atomic and Molecular Physics

Viewpoint: Single Dot Meets Single Ion

Researchers show that a single photon can transfer an excitation from a quantum dot to an ion. Read More »

Synopsis: Tunable Spin
Magnetism

Synopsis: Tunable Spin

Cobalt atoms exposed to hydrogen gas have higher spins, an effect that could be used to build magnetic nanostructures and lattices. Read More »

More Articles