Synopsis: Prime Numbers in Frozen Territory

The behavior of freezing transitions in glasses is related to the statistical properties of prime numbers.

If prime numbers are the elementary particles of arithmetic, then the Riemann zeta function is one of the key tools for analyzing how they behave. The zeta function, although relatively easy to write down, contains multitudes: it encodes information about the distribution of primes along the number line, and is the centerpiece of unsolved problems in number theory.

Connections between the statistics of primes and physics have been made before, but now, in a paper in Physical Review Letters, Yan Fyodorov of Queen Mary, University of London, UK, and colleagues show a surprising correspondence between freezing in disordered systems, like glasses, and the peaks and valleys of the zeta function.

The energy of a disordered system is like a traveler moving around on a random landscape of hill and valleys. As the temperature is lowered, the traveler bounces from place to place but eventually settles into a local energy minimum, which marks the freezing transition in the glass. Fyodorov et al. show both analytically, and with numerical simulations, that the statistical mechanical properties of the freezing transition correlate with the statistical properties of extrema of the zeta function. Not only might this work guide the way physicists tackle important statistical physics problems, but our understanding of freezing could help mathematicians make progress in attacking some of the grand challenges of number theory. – David Voss


More Announcements »

Subject Areas

Interdisciplinary PhysicsStatistical Physics

Previous Synopsis

Nonlinear Dynamics

Science of Slosh

Read More »

Next Synopsis

Interdisciplinary Physics

Force Diagrams on Skis

Read More »

Related Articles

Synopsis: Flocks Without Memory
Biological Physics

Synopsis: Flocks Without Memory

Moving particles with no memory can group together in complex flock configurations using only instantaneous cues.   Read More »

Viewpoint: Maxwell’s Demon Meets Nonequilibrium Quantum Thermodynamics
Statistical Physics

Viewpoint: Maxwell’s Demon Meets Nonequilibrium Quantum Thermodynamics

A new implementation of a Maxwell’s demon can control entropy production in a quantum-mechanical system that is driven out of thermal equilibrium. Read More »

Synopsis: Ribbon Creases and Twists

Synopsis: Ribbon Creases and Twists

Experiments with paper ribbons show how one can predict the final shape of a loop when the ribbon’s ends are pulled tight. Read More »

More Articles