Synopsis: Scaling the Heights

Researchers have found an exact solution to an equation describing growth of materials at interfaces.
Synopsis figure
Adapted from M. Kardar et al., Phys. Rev. Lett. 56, 889 (1986)

Even starting from a perfectly flat substrate, the growth of a thin film by continuous deposition can lead to a surface with increasing roughness. From a technological standpoint, interest in understanding this and other surface growth phenomena is clear, but growth behavior is also a challenging fundamental problem in nonequilibrium statistical physics. In the mid-1980s, three physicists devised the eponymous Kardar-Parisi-Zhang equation to describe how the distribution of heights on a growing surface evolves over time. Since then, the KPZ equation has been tackled for a variety of growth scenarios.

Writing in Physical Review Letters, Takashi Imamura of the University of Tokyo and Tomohiro Sasamoto at Chiba University, Japan, have built on prior work and discovered an exact solution of KPZ in the stationary case (that is, when the surface has evolved to a steady state.) The essential quantity they obtain is the two-point correlation function as a function of space and time, which is directly related to measurements of dynamic surface structure. The authors propose that laser-controlled growth of liquid crystal clusters could be used to experimentally test their stationary state calculations: a wide range of initial conditions can be produced with such a system, enabling a thorough analysis of different growth scenarios. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials ScienceStatistical Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Straying from the Norm in Pedestrian Movements
Complex Systems

Synopsis: Straying from the Norm in Pedestrian Movements

Experiments tracking people as they walk down a corridor reveal universal behaviors that, if incorporated into models, could ensure safe flow in large crowds. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

More Articles