Synopsis: U-shaped Grains Get Clingy

Piles of staples stand up to shaking better if the staple prongs have an intermediate length.
Synopsis figure
N. Gravish, Georgia Institute of Technology

The shape of grains in granular materials can have a large effect on their collective physics. A new study explores u-shaped grains and how they bind together through entanglements. In experiments described in Physical Review Letters, the researchers found that free-standing piles of metal staples held together longest when the staple “arms” had a particular length. To explain this optimum shape, the authors develop a model that may apply to other collections of irregular shaped objects.

Physicists have long been interested in how sand pours down a slope or how nuts pack inside a box. However, not much work has been done with “bent” or concave grains that can intertwine. Examples include polymer networks and anisotropic colloids, as well as the rafts that certain ant species form by interlocking limbs and mandibles.

Nick Gravish of the Georgia Institute of Technology in Atlanta and his colleagues decided to investigate a simple concave grain: the common staple. In their experiments, the researchers varied the length of the staple arms, while keeping the width constant. The team formed piles of uniform staples and then shook them up and down until the piles eventually collapsed. Staples with a length-to-width ratio of about 0.4 remained upright the longest. The scientists explained their observations using simulations and theory. It turns out that lengthening the arms of a staple increases the number of entanglements with neighbors, but conversely decreases the packing density. Staples that balance these two effects create the most stable piles. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Quantum Information

Polarized Light in Safe Storage

Read More »

Next Synopsis

Atomic and Molecular Physics

Wave of Correlation

Read More »

Related Articles

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

Synopsis: Golden Mystery Solved
Materials Science

Synopsis: Golden Mystery Solved

A long-standing discrepancy between experiments and theory concerning the electronic properties of gold has now been resolved. Read More »

More Articles