Synopsis: Using Topspin to Probe the Standard Model

The decay of top quarks could reveal physics beyond the standard model, but so far shows nothing unusual.
Synopsis figure
ATLAS Experiment © 2012 CERN

The top quark, because it is the most massive, provides a unique window into high-energy physics. For one thing, its decay releases energy that could uncover exotic processes that would otherwise be inaccessible. In addition, this decay is so fast, a fraction of a yoctosecond (10-24s), that there is not enough time for the strong interaction to create more quarks that would obscure the original properties of the bare top quark. In Physical Review Letters, researchers analyze the decay of top quark-antiquark pairs from the ATLAS detector at the Large Hadron Collider to look for gaps in the standard model for particle physics. They found no gaps.

The researchers looked at decays in which the top quark and its antiparticle, created in a high-energy collision, both produce a lepton (an electron or a muon), neutrinos, and a shower of particles. The relative emission angle of the leptons is affected by the relative spins of the original top quark and antiquark. The effect on the angular distribution is small, so the team selected collisions carefully and extensively analyzed other possible contributions. In the end, they found a correlation that agreed with that expected from the standard model, with no sign of additional processes. At the same time, the data exclude (with a significance of five standard deviations) a competing hypothesis in which the spins are uncorrelated. The conclusions complement and extend earlier studies from the D0 and CDF collaborations at the Tevatron, which also found spin correlations consistent with the standard model. – Don Monroe


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Materials Science

Layering to Warm Up

Read More »

Related Articles

Synopsis: Trailing the Photons from Neutron Decay
Nuclear Physics

Synopsis: Trailing the Photons from Neutron Decay

A high-precision measurement of the photons emitted by neutron decays brings researchers closer to a new test of the standard model. Read More »

Focus: Low Cost Polarized Positrons
Particles and Fields

Focus: Low Cost Polarized Positrons

A new technique requires much less energy to produce a beam of polarized positrons than previous techniques, making such beams potentially more widely available. Read More »

Synopsis: Lightweight Particles Might Explain Missing Lithium
Cosmology

Synopsis: Lightweight Particles Might Explain Missing Lithium

The apparent lack of lithium in the Universe, relative to theoretical expectations, could be explained by hypothetical lightweight and electrically neutral particles. Read More »

More Articles