Synopsis: Catapults for Seeds

Changes in plant tissue geometry with humidity explain how some species bend and turn to disperse their seeds.

Plants have evolved some very effective ways of dispersing their seeds, from apple trees with tasty fruit eaten by migrating animals, to dandelions sporting feathery seeds that float on air. Other plants employ more firepower: some species have developed spring-loaded catapults or slingshots to spread their seeds. In these cases, the spring tension is usually cranked up as the plant dries out and its tissues shrink or bend. Not much is known about the connection between the intrinsic geometry of the plant cells and the shape transformations during changes in humidity. In a paper in Physical Review Letters, Hillel Aharoni of the Hebrew University of Jerusalem, Israel, and colleagues report their experimental and theoretical approach to the problem.

Aharoni et al. begin by modeling rodlike structures in two species of geranium, cranesbill and storksbill, that employ elastic fibers to launch their seeds. Rather than building in a twist or bend to the rods, the authors find that the dehydrated conformation arises from the intrinsic 3D geometry of the plant cells driven by the geometric arrangement of microfibers within the cell wall. These predictions are confirmed by x-ray scattering measurements and by tracking the conformational changes during drying.

The researchers note that their model is applicable to a wide range of composite elastic structures, regardless of scale or mechanical properties. Understanding better these natural plant systems may aid development of smart mechanical structures and elucidate microscopic biomechanics of living cells. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological PhysicsMaterials ScienceMechanics

Previous Synopsis

Materials Science

Phasons Passing By

Read More »

Next Synopsis

Related Articles

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure
Astrophysics

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure

Experiments and computer simulations show that the segregation of small and large rocks on an asteroid’s surface can arise from the way particles hitting the surface collide with the rocks already present. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

Synopsis: Dirac Cones in Boron’s Version of Graphene
Materials Science

Synopsis: Dirac Cones in Boron’s Version of Graphene

A one-atom-thick sheet of boron atoms exhibits Dirac cones, marking the first time this electronic property has been found in a material lacking a graphene-like crystal structure.  Read More »

More Articles