Synopsis

Double-Layered Graphene Takes a Turn

Physics 5, s89
Raman spectroscopy probes the effects on the electronic properties of double-layer graphene when the layers are counterrotated.
K. Kim et al., Phys. Rev. Lett. (2012)

Graphene structures can come in a variety of forms—single layer, bilayer, and ribbons to name a few. A relative newcomer is one in which two graphene layers are rotationally displaced with respect to each other by an arbitrary angle. These “misoriented” double layers are expected to play a prominent role in graphene-based nanodevices, since the rotation angle provides yet another degree of control on graphene’s electronic properties.

In Physical Review Letters, Kwanpyo Kim and colleagues at the University of California, Berkeley, have cataloged the experimental Raman spectra of a series of graphene double layers where the top layer is rotated with respect to the bottom layer in one degree increments, up to a 30 degree mismatch. Kim et al. fabricated the double-layered samples by first growing single layers of polycrystalline graphene and then stacking them together. Transmission electron microscopy allowed the group to precisely measure the relative angle between the two layers.

The Raman spectra of these samples is often similar to that of single-layer graphene, but Kim et al. have mapped out how the intensity and position of prominent peaks—the “G” and “2D” peaks—change as the angle of rotation increases. In general, the work provides a detailed map of how the rotation angle affects the structure and transport properties of such graphene structures, in turn enabling rather precise construction of these double-layer structures. – Sami Mitra


Subject Areas

Graphene

Related Articles

Graphene Has Topological Phonons
Condensed Matter Physics

Graphene Has Topological Phonons

New experiments reveal graphene’s exotic phonon spectrum with unprecedented detail and completeness. Read More »

Friction That Speeds Up an Object’s Motion
Graphene

Friction That Speeds Up an Object’s Motion

A friction-like quantum force could accelerate the motion of a rotating nanometer-diameter sphere when the sphere sits next to a graphene-coated surface.   Read More »

Giving Graphene a New Edge
Optics

Giving Graphene a New Edge

A photonic version of graphene hosts never-before-seen “twig” edge states—which could provide new avenues for realizing topological phases in graphene-like materials. Read More »

More Articles