Synopsis: Tunneling with the Help of Photons

Terahertz radiation can control electron transport through quantum dots.
Synopsis figure
K. Shibata et al., Phys. Rev. Lett. (2012)

Quantum dots—small semiconductor islands containing electrons confined to all three dimensions—offer many possibilities as single-electron transistors, logic elements in quantum computers, and light-emitting devices. In these dots, a phenomenon called photon-assisted tunneling can occur in which applied radiation enables electrons to tunnel through the dot. Reporting in Physical Review Letters, Kenji Shibata at the University of Tokyo, Japan, and colleagues demonstrate photon-assisted tunneling in the hard-to-reach and technologically important terahertz part of the spectrum.

Shibata et al. study quantum dots made from indium arsenide, offering an energy-level spacing well matched to terahertz frequencies. The researchers grew quantum dots with molecular-beam epitaxy and placed a single dot between electrodes separated by a nanometer-size gap. They generated the terahertz field by pumping methanol gas with an infrared laser and efficiently coupled it to the dot via an antenna structure and a hemispherical silicon lens. Under terahertz irradiation, enhancement of electron transport through the dot was observed.

Two distinct types of photon-assisted tunneling emerged from the data: electron tunneling from the dot’s ground state into the electrodes, and electron tunneling between the electrodes via the excited state. Shibata et al. also found strong coupling between the terahertz control field and electrons in the quantum dot. Their results offer encouraging signs that the behavior of single carriers could be controlled by light in a challenging frequency range suitable for applications in spintronics and nanoelectronics. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Semiconductor PhysicsSpintronicsPhotonics

Previous Synopsis

Quantum Information

Quantum Solution for Telescope Arrays

Read More »

Next Synopsis

Nanophysics

A Bond Revealed

Read More »

Related Articles

Viewpoint: Reservoir Computing Speeds Up
Nonlinear Dynamics

Viewpoint: Reservoir Computing Speeds Up

A brain-inspired computer made with optoelectronic parts runs faster thanks to a hardware redesign, recognizing simple speech at the rate of 1 million words per second. Read More »

Synopsis: Quantum Circulator on a Chip
Quantum Information

Synopsis: Quantum Circulator on a Chip

A circulator that routes microwave signals is suitable for scaling up quantum-computing architectures. Read More »

Viewpoint: Matter-Light Condensates Reach Thermal Equilibrium
Photonics

Viewpoint: Matter-Light Condensates Reach Thermal Equilibrium

Making use of improved microcavities, hybrid condensates of matter and light can be tuned to reach a thermal equilibrium state, despite their finite lifetime. Read More »

More Articles