Synopsis

New Shape to Nuclear Pasta

Physics 5, s154
New calculations of core-collapse supernovae show how bizarre nuclear structures—called pasta—develop in the dense core of a dying star.
H. Pais and J. R. Stone, Phys. Rev. Lett. (2012)

A core-collapse supernova is the last stage of life of a massive star. In the dying star, matter is compressed to densities exceeding the density of atomic nuclei and exposed to extreme temperatures and pressures. It has been proposed that, at a certain stage of the collapse, matter self-organizes into what is known as “nuclear pasta,” a collection of bizarre structures, such as rods, slabs, and cylindrical and spherical holes (bubbles), which may constitute 10 20% of the inner core of the collapsing star.

Writing in Physical Review Letters, Helena Pais and Jirina Stone develop a fully self-consistent microscopic theory that describes the formation of nuclear pasta as the density increases. Their model predicts all the structures identified in previous studies, and finds evidence for a never-before-seen formation with a “cross-rod” shape.

The authors describe nuclear pasta as belonging to the general category of frustrated matter, which has been identified in other systems such as soft solids, ferromagnets, glasses, and biological materials. Frustration occurs when multiple competing forces cannot find a balance within the symmetry of the system, resulting in an unstable system easily driven by fluctuations between multiple degenerate ground states. For supernova matter, such competing forces are nuclear attraction and Coulomb repulsion.

The formation of nuclear pasta is likely to have profound consequences for neutrino transport. Since neutrinos are supposed to play a crucial role in a supernova explosion, the model proposed by the authors may contribute towards a more realistic description of the dynamics of a collapsing star. – Matteo Rini


Subject Areas

AstrophysicsNuclear Physics

Related Articles

A Puzzling Excess of Cosmic Deuterons
Nuclear Physics

A Puzzling Excess of Cosmic Deuterons

A long-running experiment aboard the International Space Station has found an unexpected population of cosmic rays made of heavy hydrogen ions. Read More »

Adding Certainty to Plutonium’s Fission Yield
Nuclear Physics

Adding Certainty to Plutonium’s Fission Yield

A first-of-its-kind measurement reveals the energy spectrum of the neutrons produced during the fission of plutonium, a common nuclear fuel component. Read More »

A Close Look at the Dynamics of an Ion–Neutral Reaction
Astrophysics

A Close Look at the Dynamics of an Ion–Neutral Reaction

A detailed study of a reaction between a molecular ion and a neutral atom has implications for both atmospheric and interstellar chemistry. Read More »

More Articles