Synopsis

New Shape to Nuclear Pasta

Physics 5, s154
New calculations of core-collapse supernovae show how bizarre nuclear structures—called pasta—develop in the dense core of a dying star.
H. Pais and J. R. Stone, Phys. Rev. Lett. (2012)

A core-collapse supernova is the last stage of life of a massive star. In the dying star, matter is compressed to densities exceeding the density of atomic nuclei and exposed to extreme temperatures and pressures. It has been proposed that, at a certain stage of the collapse, matter self-organizes into what is known as “nuclear pasta,” a collection of bizarre structures, such as rods, slabs, and cylindrical and spherical holes (bubbles), which may constitute 10 20% of the inner core of the collapsing star.

Writing in Physical Review Letters, Helena Pais and Jirina Stone develop a fully self-consistent microscopic theory that describes the formation of nuclear pasta as the density increases. Their model predicts all the structures identified in previous studies, and finds evidence for a never-before-seen formation with a “cross-rod” shape.

The authors describe nuclear pasta as belonging to the general category of frustrated matter, which has been identified in other systems such as soft solids, ferromagnets, glasses, and biological materials. Frustration occurs when multiple competing forces cannot find a balance within the symmetry of the system, resulting in an unstable system easily driven by fluctuations between multiple degenerate ground states. For supernova matter, such competing forces are nuclear attraction and Coulomb repulsion.

The formation of nuclear pasta is likely to have profound consequences for neutrino transport. Since neutrinos are supposed to play a crucial role in a supernova explosion, the model proposed by the authors may contribute towards a more realistic description of the dynamics of a collapsing star. – Matteo Rini


Subject Areas

AstrophysicsNuclear Physics

Related Articles

Shedding Light on the Thorium-229 Nuclear Clock Isomer
Nuclear Physics

Shedding Light on the Thorium-229 Nuclear Clock Isomer

Researchers use a laser to excite and precisely measure a long-sought exotic nuclear state, paving the way for precise timekeeping and ultrasensitive quantum sensing. Read More »

The Universe’s Topology May Not Be Simple
Astrophysics

The Universe’s Topology May Not Be Simple

Most models for the overall shape and geometry of the Universe—including some exotic ones—are compatible with the latest cosmic observations. Read More »

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life
Astrophysics

A Pathway to Making Molecular Oxygen That Doesn’t Involve Life

Researchers have quantified a pathway for the formation of molecular oxygen from the interaction of carbon dioxide with electrons, key information for searches of life on other worlds. Read More »

More Articles