Synopsis: Peeking into Fukushima’s Reactors

Cosmic rays may be used to capture images of damaged reactors at the Fukushima power plant in Japan.

Workers at Fukushima Daiichi power plant have come up with creative ideas to assess the conditions of the reactors damaged in the 2011 nuclear accident, sending balloons and robots to explore the highly radioactive environment. Yet the presence of debris, obstructions, and vapors has limited the effectiveness of such explorations. Writing in Physical Review Letters, Konstantin Borozdin at the Los Alamos National Laboratory, New Mexico, and colleagues propose an alternative method that uses cosmic-ray muons, a part of natural background radiation, to obtain a radiographic image of the reactor cores.

Cosmic rays are charged particles, mostly protons, coming from outer space and hitting the Earth at high speeds. Colliding with molecules in the atmosphere, they generate a shower of other particles. These include muons, sort of heavier versions of electrons that, if sufficiently fast, can penetrate many meters into materials. This property first enabled an intriguing imaging application in 1969, when a team led by Luis Alvarez used muon radiography to search for hidden chambers in the Egyptian pyramids of Giza.

To radiograph inaccessible parts of Fukushima reactors, Borozdin et al. propose a similar approach based on muon detectors placed right outside the reactor building. The authors compared two imaging methods: attenuation radiography, which measures how muons are absorbed inside the reactor, and scattering radiography, which monitors how their path is deviated. They show that scattering radiography would deliver more reliable images of the nuclear core after only a few weeks of measurement, allowing the visualization of melted fuel as well as debris.

While their sources remain to a large extent a mystery, cosmic rays might help us decipher one of our own human misfortunes. – Matteo Rini


More Announcements »

Subject Areas

Nuclear PhysicsInterdisciplinary Physics

Previous Synopsis


New Shape to Nuclear Pasta

Read More »

Next Synopsis

Semiconductor Physics

Finding Ferroelectrics

Read More »

Related Articles

Focus: How to Compare Books or Genomes
Complex Systems

Focus: How to Compare Books or Genomes

A mathematical technique for comparing large symbol sets suggests that less frequently used words are mainly responsible for the evolution of the English language over the past two centuries. Read More »

Synopsis: Fission Takes Its Time
Nuclear Physics

Synopsis: Fission Takes Its Time

Nuclear fission simulations show that the evolution of a splitting plutonium nucleus may be slower than previously thought. Read More »

Synopsis: Playing Games with Schrödinger
Interdisciplinary Physics

Synopsis: Playing Games with Schrödinger

Models that treat economic and biological behavior in terms of game-play resemble quantum mechanics. Read More »

More Articles