Synopsis: Finding Ferroelectrics

First-principles calculations predict a new class of ferroelectrics.
Synopsis figure
J. W. Bennett et al., Phys. Rev. Lett. (2012)

Ferroelectrics exhibit a spontaneous electric polarization that can be reversed by an applied electric field, in the same way that a ferromagnet’s spontaneous magnetic moment can be reversed by a magnetic field. In pursuit of new materials with better properties than those currently available, Joseph Bennett at Rutgers University, New Jersey, and colleagues have investigated a class of materials that they predict will be ferroelectric.

Any insulating material with a polar structure can, in principle, be ferroelectric if the energy barrier for switching electric polarization is low enough. Following this idea, the team decided to study compounds of the LiGaGe structure type—a hexagonal structure that is “stuffed” with a cation lying between atomic planes. This structure is polar due to buckling of the planes, with atomic composition and the size of the “stuffing” ion controlling the degree of buckling and the energy barrier to switching electric polarization.

Most compounds having the LiGaGe structure belong to one of six common types, comprising combinations of elements from different atomic groups of the periodic table. Bennett et al. analyzed 18 existing non-rare-earth compounds and 70 hypothetical compounds that have never been synthesized. Through first-principles calculations, they showed that eight of the candidates have polarizations and barriers to switching comparable to or better than the paradigm ferroelectrics barium titanate (BaTiO3) and lead titanate (PbTiO3). Out of these eight candidates, six have previously been synthesized, and the other two, while so far hypothetical, could possibly be obtained in metastable phases. These results suggest the possibility of expanding the list of known ferroelectrics. – Daniel Ucko


More Announcements »

Subject Areas

Semiconductor PhysicsMaterials Science

Previous Synopsis

Next Synopsis


Tiny Tractor Beam

Read More »

Related Articles

Synopsis: Measuring Spin One Atom at a Time

Synopsis: Measuring Spin One Atom at a Time

Electron microscopy experiments have measured the spin state of individual metal atoms on a graphene layer, characterizing their potential for information storage applications.   Read More »

Synopsis: Light Sees Electronic Bands

Synopsis: Light Sees Electronic Bands

An all-optical alternative to photoemission spectroscopy can probe the electronic band structure of a solid. Read More »

Viewpoint: All Together Now

Viewpoint: All Together Now

A “Schrödinger’s cat”-type effect entangles collective excitations in a semiconductor nanostructure, making a new infrared light source. Read More »

More Articles