Synopsis: Counting Photons in Quark-Gluon Plasma

A proposed mechanism for photon production in quark-gluon plasma can increase our understanding of its properties.
Synopsis figure
G. Başar et al., Phys. Rev. Lett. (2012)

Investigating quark-gluon plasma (QGP) is not trivial. Even finding out how hot it is presents difficulties. The yield of photons from the early formation stages of the plasma is a good “thermometer” for the QGP, and several detailed measurements have been made by collaborations at Brookhaven National Laboratory and the Large Hadron Collider. However, a precise theoretical understanding of the physical mechanisms driving this photon production is still lacking.

Now, in a paper published in Physical Review Letters, Gökçe Başar and colleagues at Stony Brook University, New York, and collaborators propose a mechanism for photon production in QGPs based on a well-known feature of QCD: the conformal anomaly. As a classical system, QCD possesses a special symmetry (conformal invariance) that is broken by quantum effects. Başar et al. show that the anomalous breaking of this symmetry in the presence of strong magnetic fields, such as the ones present in the QGP, can lead to a novel mechanism for photon production. They also show that an estimate of the photons produced through this mechanism corresponds to known experimental signals. However, further detailed analysis is needed to firmly understand the role of the proposed mechanism in the context of the QGP, and such results are eagerly awaited. – Abhishek Agarwal


Announcements

More Announcements »

Subject Areas

Nuclear Physics

Previous Synopsis

Interdisciplinary Physics

Networks Evolving on Two Fronts

Read More »

Next Synopsis

Graphene

Identification by Bonds

Read More »

Related Articles

Viewpoint: Uncovering a Quantum Phase Transition in Nuclei
Nuclear Physics

Viewpoint: Uncovering a Quantum Phase Transition in Nuclei

Simulations predict that the ground states of certain light nuclei lie near a quantum phase transition between a liquid-like phase and a phase involving clusters of alpha particles. Read More »

Viewpoint: Of Gluons and Fireflies
Nuclear Physics

Viewpoint: Of Gluons and Fireflies

Improved models of gluon fluctuations within protons have been developed and applied to particle collision data, pointing to strong gluon fluctuations at high energies. Read More »

Synopsis: Neutron Capture Constraints
Nuclear Physics

Synopsis: Neutron Capture Constraints

Experiments place tighter bounds on neutron capture rates that play an important role in the production of heavy elements in the Universe. Read More »

More Articles