Synopsis: Tuning Casimir Forces

Quantum Hall effects can be exploited to tune, reverse, and even eliminate the Casimir force between two graphene sheets.

When two uncharged metallic mirrors are placed sufficiently close in a vacuum, fluctuations in the quantum vacuum field create an attractive force between them, known as the Casimir force. But if the mirrors are made of graphene, instead of a metal, something different can happen in the presence of a magnetic field. Writing in Physical Review Letters, Wang-Kong Tse and Allan MacDonald at the University of Texas at Austin investigate a possible method for controlling and even eliminating the Casimir force in this manner.

The scheme exploits the emergence of discrete Landau energy levels in graphene, arising from the quantum Hall effect induced by a strong magnetic field. The Casimir effect thus becomes dependent on the Hall conductivity, which in turn leads to the quantization of the Casimir force and allows tuning it electrically between repulsive and attractive values. The authors’ calculations show that the Casimir force can be strongly suppressed when one of the mirrors is charge neutral. The predicted effect should also hold for a sphere-and-plate mirror combination, an important geometry for studying Casimir effects due to the difficulty of keeping two planes perfectly parallel to each other.

A key motivation for suppressing the Casimir force is provided by the efforts to examine gravitational attraction at short distances (a few micrometers), over which theories have predicted non-Newtonian behavior. At these distances, the Casimir force exceeds gravitational attraction by far. The authors’ scheme would solve this problem and allow more sensitive and direct measurements of gravitational attraction. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

GrapheneQuantum Physics

Previous Synopsis

Atomic and Molecular Physics

Downsizing Optical Lattices

Read More »

Next Synopsis

Related Articles

Viewpoint: Fermionic Vortices Find their Dual
Quantum Physics

Viewpoint: Fermionic Vortices Find their Dual

Theoretical work reveals a surprising relationship between the physics of fermionic vortices and quantum electrodynamics. Read More »

Viewpoint: Classical Simulation of Quantum Systems?
Optics

Viewpoint: Classical Simulation of Quantum Systems?

Richard Feynman suggested that it takes a quantum computer to simulate large quantum systems, but a new study shows that a classical computer can work when the system has loss and noise. Read More »

Viewpoint: Measuring Quantum Kicks from a Beam of Light
Optics

Viewpoint: Measuring Quantum Kicks from a Beam of Light

Force sensors levitated by light have reached the quantum regime, in which their sensitivity is limited by the momentum kicks of individual photons. Read More »

More Articles