Synopsis: Electron Pairing in Iron-Based Superconductors

Photoemission experiments put new constraints on the pairing mechanism in iron-based superconductors.
Synopsis figure
K. Okazaki et al., Phys. Rev. Lett. (2012)

The interaction that allows electrons in a superconductor to pair up and flow in a zero-resistance current differs from one family of superconductor to another—and in some cases, isn’t known. That’s the situation for the recently discovered family of iron-based superconductors: the symmetry of the superconducting energy gap (that is, how the width of the gap changes with electron momentum) is an indicator of the pairing mechanism, but the gap symmetry is not the same for all crystal structures. Adding to the lack of consensus, experiments reported in Physical Review Letters show that the gap in the iron-based superconductor FeTe0.6Se0.4 is more anisotropic than previously thought. The findings put new constraints on any theoretical model of the pairing mechanism.

Angle-resolved photoemission spectroscopy (ARPES) is the most direct way to probe the energy and momentum of a material’s electrons. To date, ARPES has mostly revealed an isotropic gap in iron superconductors, which is consistent with electron pairing mediated by a combination of spin fluctuations and phonons. Conventional ARPES, however, is only sensitive to electrons near the surface, which may not represent those in the bulk of the material. Using an enhanced ARPES technique that is more sensitive to bulk electrons, Kozo Okazaki at the University of Tokyo, Japan, and colleagues have observed a pronounced gap anisotropy in FeTe0.6Se0.4: the gap is highest for electrons moving along the x and y axes of the material and lowest for those moving along the x-y diagonals. The gap’s shape suggests phonons aren’t likely to play a role in the pairing mechanism, but at least for this material, long-range magnetic interactions between the iron atoms should be taken into account. – Jessica Thomas


More Announcements »

Subject Areas


Previous Synopsis


Tuning Casimir Forces

Read More »

Next Synopsis


Waste-Free Nanowalkers

Read More »

Related Articles

Focus: <i>Landmarks</i>—Superconductor Quantizes Magnetic Field

Focus: Landmarks—Superconductor Quantizes Magnetic Field

In 1961, confirmation that a magnetic field inside a superconducting ring is limited to discrete values demonstrated that superconducting electrons pair up. Read More »

Viewpoint: Wiring Up Superconducting Qubits
Quantum Physics

Viewpoint: Wiring Up Superconducting Qubits

A qubit made of a semiconducting nanowire sandwiched between two superconductors could simplify the design of quantum information processing architectures. Read More »

Synopsis: On-Chip Thermometer

Synopsis: On-Chip Thermometer

A tiny thermometer based on a single tunnel junction records temperatures in the millikelvin regime with a simple, compact design. Read More »

More Articles