Synopsis: Logic with Light and Matter

Light stored in a Bose-Einstein condensate can be manipulated with light to create an optical AND gate.
Synopsis figure
C. Vo et al., Phys. Rev. Lett. (2012)

Controlling single photons with other photons offers one route to robust quantum information processing, but this is hard to do in conventional optical materials. Taking a different tack, Christoph Vo and colleagues at the Max Planck Institute for Quantum Optics in Garching, Germany, report in Physical Review Letters their efforts to build optical logic gates with Bose-Einstein condensates. In this case, a photon is converted to an atomic excitation and stored until it is stimulated by control photons to turn back into a photon.

Vo et al. aim two light pulses at a rubidium-87 Bose-Einstein condensate, which prepares a population of atomic states with a defined momentum. Another pulse pair is introduced, but with one of the pulses coming at a different angle, creating an atomic population with different momentum vectors. These populations are matter waves, which are allowed to interact until a retrieval light pulse turns the scattered atom states back into photons. However, the retrieval pulse only generates output light if the two input signals are present, in essence creating one of the most elementary of logic devices, the AND gate.

Although the gate is a classical one, and not a quantum device operating in the world of single photons, the authors show the operations are phase coherent and that the interacting matter waves can in fact be used to control light with light. At the same time, Vo et al. are well aware of the challenges in scaling down to single photons, with the path to that result as yet unclear. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsQuantum Information

Previous Synopsis

Biological Physics

Paddling in Sync

Read More »

Next Synopsis

Related Articles

Viewpoint: Sensing Magnetic Fields with a Giant Quantum Wave
Strongly Correlated Materials

Viewpoint: Sensing Magnetic Fields with a Giant Quantum Wave

A refined version of a Bose-Einstein-condensate microscope detects static magnetic fields near the surface of a chip with unprecedented sensitivity and over a wide temperature range. Read More »

Viewpoint: Microwave Quantum States Beat the Heat
Quantum Information

Viewpoint: Microwave Quantum States Beat the Heat

A new quantum communication protocol is robust in the presence of thermal noise, paving the way for all-microwave quantum networks. Read More »

Synopsis: Traveling with a Quantum Salesman
Quantum Information

Synopsis: Traveling with a Quantum Salesman

Quantum computing could speed up certain algorithms for solving the famous traveling salesman problem. Read More »

More Articles