Synopsis: Paddling in Sync

Flagella on the surface of a multicellular alga can beat in an unexpectedly synchronized fashion.
Synopsis figure
Raymond E. Goldstein, University of Cambridge

The multicellular alga Volvox carteri swims by the concerted beating of hairlike flagella that protrude from each of the thousands of cells on its surface. Neighboring flagella may influence each other’s motion, but it remains unclear whether larger-scale collective synchronization can arise, since this simple organism doesn’t possess a biochemical means of driving its flagella into collective motion. In Physical Review Letters, Douglas Brumley, at the University of Cambridge in the UK, and colleagues show that the flagella can indeed beat in sync, forming collective patterns previously observed only in more tightly packed arrays of cilia, such as those found in the human respiratory system.

Brumley et al. used high-speed imaging techniques to record the flow of liquid around an alga immersed in solution. Their movies show that the flagella beat at the same rate and with a phase pattern that produces so-called metachronal waves, which resemble the “Mexican waves” formed by cheering fans in a stadium. The authors apply a hybrid elastic-hydrodynamic model to explain how two contributions lead to synchronization: The flow of fluid created by a given flagellum nudges its neighbors into synchronized motion, while the surface of the alga further distorts the flow pattern, inducing a phase shift that sets the direction of the wave.

The flagella in Volvox carteri are spaced relatively far apart, and direct mechanical coupling between flagella appears to play only a minor role. The observed hydrodynamic interactions may therefore explain how synchronization emerges in a broad class of biological organisms, similarly characterized by weak mechanical coupling between their motile appendages. – Matteo Rini


Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Logic with Light and Matter

Read More »

Related Articles

Synopsis: Bacteria Create Own Swim Lane
Biological Physics

Synopsis: Bacteria Create Own Swim Lane

Researchers calculate the size of a low-resistance buffer zone created by microbial organisms as they swim through the mucus lining of the stomach. Read More »

Synopsis: Cells Go with the Crowd
Biological Physics

Synopsis: Cells Go with the Crowd

A simple model suggests a way in which clusters of cells could follow concentration gradients in cases where individual cells cannot. Read More »

Synopsis: Identifying Whale Dialects
Biological Physics

Synopsis: Identifying Whale Dialects

A new spectral analysis method can automatically find differences in the calls of whales from separate groups. Read More »

More Articles